
Cryptography with Disposable Backdoors1

Kai-Min Chung1, Marios Georgiou2, Ching-Yi Lai3 and Vassilis Zikas42

1Academia Sinica, kmchung@iis.sinica.edu.tw3

2City University of New York, mgeorgiou@gradcenter.cuny.edu4

3Institute of Communications Engineering, National Chiao Tung University, cylai@nctu.edu.tw5

4University of Edinburgh, vzikas@inf.ed.ac.uk6

January 11, 20207

Abstract8

Backdooring cryptographic algorithms is an indisputable taboo in the cryptographic literature for a9

good reason: however noble the intentions, backdoors might fall in the wrong hands, in which case security10

is completely compromised. Nonetheless, more and more legislative pressure is being produced to enforce11

the use of such backdoors.12

In this work we introduce the concept of disposable cryptographic backdoors which can be used only13

once and become useless after that. These exotic primitives are impossible in the classical digital world14

without stateful and secure trusted hardware support, but, as we show, are feasible assuming quantum15

computation and access to classical stateless hardware tokens.16

Concretely, we construct a disposable (single-use) version of message authentication codes, and use17

them to derive a black-box construction of stateful hardware tokens in the above setting with quantum18

computation and classical stateless hardware tokens. This can be viewed as a generic transformation from19

stateful to stateless tokens and enables, among other things, one-time programs and memories. This is20

to our knowledge the first provably secure construction of such primitives from stateless tokens.21

As an application of disposable cryptographic backdoors we use our constructed primitive above to22

propose a middle-ground solution to the recent legislative push to backdoor cryptography: the conflict23

between Apple and FBI. We show that it is possible for Apple to create a one-time backdoor which unlocks24

any single device, and not even Apple can use it to unlock more than one, i.e., the backdoor becomes25

useless after it is used. We further describe how to use our ideas to derive a version of CCA-secure26

public key encryption, which is accompanied with a disposable (i.e, single-use, as in the above scenario)27

backdoor.28

1 Introduction29

The use of strong cryptographic primitives for widely available devices has led to controversial debates30

between the computer security community and public policy makers. On the one hand, law enforcement31

agencies argue that allowing access to such primitives enables cyber-terrorists to use it to elude detection,32

and thereby reduces the effectiveness of law enforcement. On the other hand, the computer security—and33

most vocally the cryptographic—community argues that allowing everyone to use such strong primitives34

can help protect their security and make cybercrime less effective in the first place.35

In this work we put forth the concept of disposable-backdoor cryptography. Intuitively, given a keyed cryp-36

tographic primitive, e.g., authentication/identification or encryption, we can define its “disposable-backdoor”37

version. In this version, the key-generation algorithm outputs, additionally, a quantum key/backdoor that38

can be used to gain knowledge about the secret information, e.g., the plaintext included in a given cipher-39

text. In a nutshell security ensures the following: (1) in absence of the above additional quantum key the40

scheme achieves the same guarantees as its non-backdoored counterpart; and (2) anyone given access to the41

backdoor can use it only once. (E.g., an adversary participating in two CCA games and given access to the42

backdoor might only win in one of these games.)43

In theory, the above transformation is feasible by using the so called one-time programs [22]. Informally,44

these are programs that can be executed once and then become useless, i.e., they terminate and cannot be45

1

reused. However, this exotic primitive is known to be impossible both in the classical world [22] and in46

the quantum world [10] without any further setup assumptions. We overcome this limitation by defining47

one-time programs relative to a stateless classical oracle—this corresponds to equipping the programs with48

access to a classical honestly generated stateless hardware token. We prove that one-time programs are49

possible in this stateless (classical) hardware token model. This is, to our knowledge, the first construction50

of one-time programs (consequently, also of one-time memories) from stateless (classical) tokens. We note51

in passing that such a construction is impossible in the classical setting, i.e., without quantum computation52

(cf. Section 1.2).53

Our construction of one-time programs from stateless (classical) tokens is a special instantiation of a54

more general transformation—which we provide—that uses quantum computation to reduce a stateful (clas-55

sical) oracle to a stateless (also classical) one. We view the fact that quantum cryptography enables such a56

transformation, and its implications, as a new advocate of the relavance of quantum cryptography for appli-57

cations, beyond the standard application of quantum key distribution [6]. Furthermore, this transformation58

is a considerable step in the long line of research investigating the power of stateless tokens, which are59

known to be a strictly weaker assumption than their stateful counterparts. For example, one-time programs60

are trivial in the stateful token model—simply run the program inside a token that is instructed to halt61

after the first use—whereas they can be easily shown impossible from stateless tokens without quantum62

computation—the standard argument that “if I can run a classical stateless program on any one input I63

can also run it on any two inputs” [22] trivially applies here. Furthermore, stateful tokens are in general64

susceptible to resetting attacks. Using the stateful-to-stateless transformation we can neutralize such attacks65

in the quantum world.66

Our results, and in particular the above transformation, have several applications. Since our techniques67

enable replacing stateful (classical) hardware tokens by stateless ones, they can be applied in a variety of68

settings where stateful tokens are necessary, e.g., physical (multi-party) computation [16, 17]. Furthermore,69

cryptography with disposable backdoors can be used when one might be willing to selectively compromize70

security of some sessions but does not want whoever has the power to do so to be able to use this powers71

indefinitely. For example, our techniques allow for a middle-ground solution to one of the most popular72

instances of the above debate between security and policy makers, namely, the case of the FBI against73

Apple Inc. [26]. In short, the FBI wanted Apple Inc. to create and electronically sign a new software that74

would enable the FBI to unlock a work-issued iPhone 5C, recovered from one of the shooters in a December75

2015 terrorist attack in San Bernardino, CA [30]. Apple Inc. refused to comply with this request. The main76

argument was that such a software would effectively serve as a backdoor and anyone who got his hands77

on it would be able to breach the privacy of the smartphone’s holder at will. Thus if the backdoor fell in78

malicious hands, it would yield unprecedented havoc. Indeed, unlike what was suggested by the FBI [11],79

there does not seem to be a way to create some digital information that can only be used by the “good80

guys” and becomes useless (or less functional) in the hands of malicious actors that manage to steal the81

information the good guys hold.82

Using our techniques we can prove that with the help of quantum storage, we can develop backdoors83

that can be used only once to bypass the security of any one device from a defined set, and then become84

completely useless. In particular, we show that these single-use backdoors allow an arbitrary smartphone85

to be unlocked and they become useless after this phone has been unlocked. Most importantly, not even86

Apple itself is able to unlock more than one phones, which ensures that anyone getting access to Apple’s87

information can at most break into one phone.88

More concretely, we demonstrate a construction of “disposable backdoored devices” as a way to resolve89

the smartphone vs. law enforcement conundrum. Concretely, our construction allows a device (e.g., smart-90

phone) vendor to embed in its devices a stateless content locking mechanism, and create (and locally store91

on the vendor’s side) a disposable unlocking backdoor that can unlock exactly one smartphone—any one92

from a specified set. (We stress that in our construction the smartphone is a standard classical device,93

but the security of our scheme would hold even if it were a quantum device.) To make our scheme most94

general we look at the question of how we can dynamically extend the set of devices/smartphones that can95

be unlocked, even after the generation of the original backdoor. An obvious solution would be to create a96

new one-time backdoor and update every phone in the set we want it to be able to unlock. However, this97

solution is clearly not scalable, as it requires such an update of all existing devices—old and new—every98

2

time a new (batch of) devices needs to be released. Instead, we provide a mechanism for extending the set99

of devices that can be unlocked with the existing single-use backdoors without interacting with the ones100

already in the set. This mechanism relies on a black-box technique for extending one-time memories, which101

might be of independent interest.102

We note in passing that we acknowledge that backdooring of any type is a charged topic in the cryp-103

tographic and security literature. Nonetheless, we view our work as an investigation of a theoretically104

interesting middle-ground, which might allow the cryptographic community to be prepared against public105

pressure that might demand legislative instatement of such backdooring.1 Indeed, one might argue that106

given such a functionality, law enforcement would have the ability to surveil anyone they choose. Although107

this is in-principle true, if it is publicly known that there is only one (or a small limited number of)2 such108

disposable backdoors, law enforcement will have to use them with care to make sure that they do not become109

unavailable in high-profile cases where the public might agree that their use is acceptable.110

1.1 Overview of our techniques111

The new cryptographic tool for our constructions, which we define here, is disposable message authentication112

codes (DMAC). This primitive allows someone having a quantum key to use it exactly once in order to113

compute an authentication tag to any message. In fact, its construction is closely related to that of quantum114

money [3].115

We use DMACs to devise a generic reduction of stateful to stateless classical oracles. These oracles116

correspond to the notion of stateless and honestly-generated (classical) hardware tokens. Concretely, for117

any given stateful token T we show how to generate code for a stateless token along with one-time (quan-118

tum) backdoors, so that we can use them to devise a protocol that implements the stateful token T with119

unconditional security. Importantly, the tokens/oracles considered in this work can only be queried in a120

classical manner. In fact, such a reduction would become impossible if quantum superposition queries to121

the stateless token are allowed (see further discussion below), and restriction to classical queries is the key122

to enable our transformation. We believe that such restriction is a mild assumption that holds in most123

existing instantiations of primitives, such as smartcards, trusted co-processors, etc.124

The idea behind our stateful-to-stateless transformation is to generate a (quantum) DMAC tagging key125

to be used to emulate each round of interaction with the stateful token/oracle T . Denote this key sequence126

by k1, . . . , km. We then derive (a program for) our stateless oracle which given any sequence of inputs127

(x1, t1), . . . , (xq, tq), checks that each ti is a valid DMAC tag corresponding to the i-th instance, and if this128

is the case, perform the same computation that T would on input x1, . . . , xq. The security of the DMAC129

will ensure that none can receive responses from the stateless tokens on query-sequences that have different130

prefixes. Hence, once any sequence of q queries has been successfully submitted, there is no way to “rewind”131

the token and query it on a different sequence, which emulates the behavior of the stateful token T .132

Having built such a stateful-to-stateless transformation, we go on to create our transformation from any133

program to its one-time version relative to a classical oracle. The idea here is to first describe the one-time134

program as a stateful oracle/token and then use the above transformation to turn it into a stateless one.135

Finally, using one-time programs and one-time memories as their special case, we address the problem of136

building one-time backdoors for unlocking devices. To achieve this, we allow the vendor to create phones137

that are hardcoded with a fresh symmetric-encryption key. When a phone locks, it uses this key to encrypt138

its state and subsequently discards the key. Now, the key can only be accessed through the one-time memory.139

1.2 Related Literature140

Our work combines elements from several different areas of classical and quantum cryptography, ranging141

from quantum money to quantum tokens for message authentication codes and one time memories.142

DMACs can be thought as the symmetric key version of the one-time tokens for digital signatures [12].143

However, as symmetric-key primitives, DMACs can be—and in our work are—implemented by information-144

theoretic constructions, which tolerate unbounded adversaries. Other related primitives are secret-key quan-145

tum money, e.g., [2, 3], and quantum retrieval games (QRGs) [18, 29]. A QRG differs from a DMAC in146

1Such cryptography-restrcting legislation has been used in the past and several countries are starting to reinstate it [15].
2Our results can be extended to an a-priori limited-use backdoor version, cf. Remark 1 in Appendix B.

3

that it does not allow the adversary to have access to a verification oracle. Gavinsky [18] proved that such147

a primitive is enough to construct secret-key quantum money by having a 3-round verification protocol148

with the bank. Later Georgiou and Kerenidis [19] improved this construction by achieving only one round149

verification.150

One-time memories (OTMs) were first proposed by Bennett et al. [7], under the term quantum multi-151

plexing. They are devices that contain two secrets but only one of the two can be extracted. Goldwasser152

et al. [22] proved that OTMs are enough to achieve one-time programs, i.e. programs that can be run only153

once. Broadbent et al. [10] extended this result to the quantum setting by showing that quantum OTMs154

are enough to construct quantum one-time programs. Despite being very close to a non-interactive version155

of oblivious transfer, OTMs are impossible to achieve in the plain model, both in the classical world and in156

the quantum world, even in the computational setting. The classical impossibility comes from the fact that157

a memory should correspond to a classical bitstring and therefore by copying the bitstring we can easily158

extract both secrets.159

Quantumly, the no-cloning theorem seems to enable a construction of OTMs. Unfortunately, this is still160

impossible, since it is theoretically possible to extract a value from a quantum state with probability close to161

1 without collapsing the state. Thus we can invert the extraction procedure of the first value and then extract162

the second value as well [1]. This impossibility underlines the necessity of additional setups, e.g., classical163

tokens, to achieve one-time primitives. For details see Winter’s “Gentle Measurement Lemma” [31] which164

was later improved by Ogawa and Nagaoka [28] as well as Aaronson’s “Almost as good as new lemma” [1].165

The lemmata state informally that a post-measurement state of an almost-sure measurement will remain166

close to its original.167

The idea of using quantum information to reduce stateful to stateless tokens was originally posted by168

Broadbent, Gharibian, and Zhou [8], but in a model different from ours. [8] gave a candidate prepare-and-169

measure scheme, but the original security proof was incomplete. Later, in a concurrent work, Broadbent et170

al. [9] showed a prepare-and-measure scheme that is secure against an adversary making a linear number of171

queries. To our knowledge, our work is the first to provide a provably secure reduction of (classical) stateful172

to stateless tokens in the quantum setting that is secure against an adversary making a polynomial number173

of queries (though the results are not directly comparable given the difference in the models).174

Finally, starting with the work of Katz [25], several works investigated the sufficiency of stateless hard-175

ware tokens—not necessarily honestly generated—for secure (multi-party) computation, e.g., [14, 24]. These176

results are in the classical setting and, therefore, do not imply feasibility of one-time programs or OTMs, or177

a generic reduction of stateful to stateless tokens.178

1.3 Organization of the Paper179

The remainder of the paper is organized as follows. In Section 2, we provide some preliminaries, notation,180

and lay down the model of computation. In Section 3, we provide our definitions and instantiation of181

disposable MACs (DMACs). Then, in Section 4, we provide our reduction of stateful (classical) tokens to182

stateless (classical) tokens using DMACs. In Section 5, we provide our definition of one-time memories183

(OTMs) relative to a (classical) oracle, which captures the security of OTMs in the stateless hardware token184

model. Finally, in Section 6, we present our constructions of one-time (disposable) backdoor devices—185

including the definition and construction of extendible OTMs. Due to space limitation, certain primitives186

and proofs have been moved to the clearly marked appendix which is referred to appropriately. At the end187

of the appendix, we also include a direct construction of One-time Programs (Section C) along with our188

definition and construction of CCA-secure encryption with disposable backdoors (Section D).189

2 The model190

In this section we describe our model of computation. Before that, we provide some necessary terminology191

and notation: A function f is negligible if f(n) ∈ o(1/poly(n)) for any polynomial poly. For two quantum192

states ρ, σ we denote by ∆(ρ, σ) their trace distance 1
2 ||ρ− σ||1. If the trace distance between two quantum193

states is negligible then we will denote this by ρ ∼s σ and we will say that the quantum states are statistically194

indistinguishable. For two quantum algorithms A,B that possibly have inputs and oracle access to some195

4

algorithms, we will write A ∼s B if the quantum states that they output are statistically indistinguishable.196

Our results consider systems that might be classical and/or quantum computation enabled. E.g., our197

disposable-backdoor device application considers a classical smartphone but the vendor—who also stores the198

one-time backdoor—can perform quantum computation, i.e., create, store, and measure qubits. Quantum-199

enabled parties can store quantum states and exchange them with each other. We consider computational200

or information-theoretic security in the quantum setting, i.e., depending on the primitive we discuss, the ad-201

versary can be either a polynomially bounded or a computationally unbounded quantum machine which can202

make only a polynomial number of (classical) queries to its oracles—this polynomial, however, is not known203

to our constructions. In particular, for the security of DMACs we consider unbounded adversaries with204

polynomially many queries; for the security of One-time Memories, One-Time Programs, and our Stateful-205

to-Stateless transformation we consider simulation based definitions where the simulator has asymtotically206

the same running time as the adversary; for the security of One-time backdoored Devices and One-time207

backdoors for IND-CCA secure encryption, we consider QPT adversaries.208

Our constructions are assumed access to classical tokens which allow only classical access—in particular,209

the only way to interact with such a token is to hand it as input a classical string. We devise natural defini-210

tions of the primitives we construct as oracle algorithms in the plain model of computation (cf. Section 5.)211

More concretely, we model algorithms with access to classical tokens as oracle algorithms, where the oracle212

is classical and offers the same functionality as the corresponding token. In particular, our classical oracles213

can only be queried with classical strings (no quantum interfaces), may only perform classical computations,214

and produce classical output. Throughout this work we use the terms oracle and token interchangeably.215

Recall that the assumption of classical-only tokens is not just consistent with the capabilities of common de-216

vices that can be used as hardware tokens, e.g., smartcards, but it is also minimal since quantum-accessible217

tokens are known to be insufficient to circumvent the impossibility of one-time primitives [1].218

3 Disposable MACs219

In this section we introduce the notion of disposable message authentication codes (DMACs, in short) and220

demonstrate how they can be implemented. In a nutshell, DMACs are a one-time version of classical MACs,221

i.e., the secret key can be used to authenticate only a single message and then becomes useless (except222

for verification purposes). We remark that DMACs are different from what is called one-time MACs in223

the cryptographic literature. Indeed, the latter are MACs that preserve their security as long as they are224

used at most once, i.e., they could be used for tagging more than one message but this would render them225

insecure/forgeable. Instead, DMACs do not allow anyone—honest or adversarial—to use the same MAC226

key to tag two different messages.3227

Concretely, classical message authentication codes (MACs) are symmetric-key primitives that allow two228

parties, who share a key, to exchange messages in an authenticated manner. In a nutshell, any of the parties229

can use the key within a tagging algorithm Tag to create an authentication tag t to any given message (t230

is often referred to as a MAC tag). The security of the scheme ensures that only the message/tag pairs231

generated with the shared key will always be accepted by the receiver (completeness); however, no adversary232

who does not know the key can forge an acceptable authentication tag on a new message (existential233

unforgeability).234

DMACs are MACs whose key can be used to tag exactly one message. This is achieved by adding a235

quantum state as a part of the tag-generation key. This quantum state allows whoever holds it to tag any236

one message of their choice. We remark that DMACs authenticate classical (not quantum) messages. The237

formal definition follows.238

Definition 1 (Disposable single-bit MACs). A single-bit disposable MAC (DMAC) is a triplet of algorithms239

(Gen,Tag,Ver) defined as follows:240

• Gen(1n) → (s, ρ) is a quantum algorithm that takes as input a security parameter n and returns a241

disposable (secret) key-pair consisting of a classical bit-string s of size n and a quantum state ρ. We242

3There is an unfortunate clash in terminology in the literature as one-time programs and one-time memories achieve a similar
“one-timeness” as DMACs, which is different from what one-time MACs and one-time signatures achieve. Here, we choose to
use the term disposable for MACs to avoid ambiguity.

5

will refer to ρ as the disposable (part of the) key.243

• Tag(ρ, b)→ t is a quantum algorithm that takes as input a quantum state ρ and a bit b, and returns a244

classical tag t.245

• Ver(s, b, t) → {0, 1} is a classical algorithm that takes as input a secret s, a bit b, and a tag t, and246

either accepts or rejects.247

The security of DMACs is similar to the security of the original MACs (we refer to [21] for a formal248

definition), but instead of existential unforgeability, it requires disposable existential unforgeability property249

which forbids the adversary from creating valid tags for two different (classical) messages with a single250

tagging key. Note that unlike standard EUCMA-security, the adversary is not given access to a MAC-tag251

generation oracle—since the disposable key can be used only once. However, we do allow the adversary to252

use a classical verification oracle that, given a received (message,tag)-pair (b, t), responds whether or not253

Ver(s, b, t) = 1.254

Definition 2 (Security of DMACs). A DMAC (scheme) (Gen,Tag,Ver) is said to be secure if it satisfies255

the following properties:256

Completeness. For any bit b and (s, ρ) output by Gen, it holds that Ver(s, b,Tag(ρ, b)) = 1.257

Disposable Existential Unforgeability (DEU). Let Vs be a classical oracle, which on input a bit b258

and a tag t, outputs Ver(s, b, t). A DMAC (Gen,Tag,Ver) is DEU-secure if for any (even computationally259

unbounded) quantum algorithm A with oracle access to Vs and polynomially many queries to Vs, it holds260

that AdvDMAC

A ≤ negl(n), where261

AdvDMAC

A := Pr
(s,ρ)

$←Gen(1n)

(t0,t1)
$←AVs(·,·)(ρ)

[Ver(s, 0, t0) = 1 ∧ Ver(s, 1, t1) = 1].

Note that in the above experiment, the adversary is not given the secret verification key s generated262

by Gen. This is the reason why this primitive is a secret-key primitive. In fact, in our constructions, if263

the adversary would get s, then he would be trivially able to generate valid MACs. This is because our264

constructions generate the disposable part of the key ρ from the secret s. It is also easy to verify that265

the DEU-security implies the classical notion of existential unforgeability [23] but without the MAC-tag266

generation oracle. Indeed, if the adversary had a process A for generating a valid MAC tag on a message267

without knowing any part of the key, then he could trivially break DEU-security by first running A to forge268

a MAC on one message b0 and then use the disposable key ρ to generate a MAC tag for b1 (the completeness269

property ensures that the latter will always succeed). In fact, intuitively, one should think of the quantum270

state as a one-time access to the tagging oracle.271

Construction of DMACs. Despite our work being the first to provide a formal definition of DMACs,272

there are a couple of heavily related primitives studied in the quantum cryptography literature—e.g., quan-273

tum retrieval games [18], unforgeable quantum tokens [29], and one-time quantum digital signatures [12]. In274

fact as part of their one-time quantum digital signatures, Ben-David and Sattath [12] already developed275

the techniques and defined the algorithms that one needs for implementing DMACs. For completeness, we276

include this construction and the security argument in Appendix A. Notice that although we can create277

directly disposable MACs from disposable signatures, such an approach loses the information-theoretic se-278

curity of the definition (since public-key signatures require computational assumptions). Instead, by being279

careful and using only part of [12], we achieve information theoretic security.280

From single-bit to string DMACs. Definition 1 can be extended to the case where we want to tag a281

string of several (polynomially many) bits. In this case we require that there is no algorithm that can tag282

two different bit-strings. We refer to this primitive as DMAC for strings or string DMAC. The corresponding283

scheme and security definitions are trivially derived by modifying Definitions 1 and 2 so that instead of bits,284

they are applied to strings. For the remainder of this paper, we use DMAC to refer to string DMAC.285

6

Code for A :
i← 1
state← ⊥
loop: On query x

(y, state)← Ci(x, state)
i+ +
return y

(a) Standard formulation

Code for A :
S ← []
loop: On query x

Append x on S and parse S as
(x1, . . . , xτ)

state← ⊥
for i ∈ [τ] do

(y, state)← Ci(xi, state)

return y

(b) Equivalent formulation

Figure 1: Stateful Algorithm with respect to {Ci}i∈Z

The construction of string DMACs from single-bit DMACs is straightforward: To generate tags for an286

n-bit string m ∈ {0, 1}n, simply create n independent key-pairs (s1, ρ1), . . . , (sn, ρn) for single-bit DMACs;287

the ith disposable key ρi is used to authenticate the i-th bit of m. The security intuition of the construction288

follows from the fact that since the key-pairs are honestly and independently generated, the single-bit289

DMAC schemes can be trivially executed in parallel. Note that as straightforward as this might be in the290

classical setting, quantum interference requires special treatment. Nonetheless, as our DMAC construction291

is effectively extracted from the one-time quantum signature from [12], the proof follows immediately from292

their reduction of multi-bit to single-bit one-time quantum signatures [12, Section 5].293

Theorem 1. There exists a secure DMAC in the plain model.294

In terms of quantum resources, the construction of Aaronson and Christiano [3] achieves a single-bit295

DMAC using O(n) qubits, where n is the security parameter. Thus, to achieve an l−bit DMAC we need296

O(nl) qubits.297

4 Reducing stateful to stateless oracles298

Here we show that the notion of quantum DMACs is powerful enough to turn any stateful and classically-299

queried classical oracle into a stateless one. Our technique follows the approach of Döttling et al. [13]. We300

model a stateful oracle as a stateless oracle together with a stateful database that stores the queries. Then301

every time the oracle is queried, it is reset and then runs all the previous queries, followed by the last one.302

Using this formalization the transformation of a stateful algorithm A into a stateless B works as follows.303

As a first step assume some polynomial number q of queries are allowed. We create q single-bit DMAC304

key-pairs (ski, ρi). Then the algorithm B has the following structure. At the first time it is called, it is305

queried with x1 together with a tag t1 on x1 with respect to the key sk1. If the tag is valid, then the306

algorithm runs as a subroutine A with input x1 and returns A’s output. For the next query x2, the calling307

algorithm should provide both (x1, t1) and (x2, t2), where t2 is a tag of x2 with respect to sk2. Now B will308

first run A on the first input and then run A on the second input and return this result.309

Stateful oracle. A stateful oracle can be thought of as a sequence of stateless oracles {Ci}, where each310

of them after execution outputs a state that is fed as input to the next oracle together with a query. Equiv-311

alently, a stateful oracle could keep a list of all the previous queries and re-execute the whole computation312

from the beginning for each new query.313

Definition 3 (Stateful algorithm). A stateful oracle A with respect to a family of stateless oracles {Ci}i∈Z314

works as shown in Figure 1a.315

Up to a polynomial slowdown, an equivalent formulation of a stateful oracle is shown in Figure 1b.316

7

Stateful to stateless transformation A stateful to stateless oracle transformation is an algorithm that317

takes as input the description of a stateful oracle and returns the description of a stateless oracle together318

with a quantum state. We require the correctness that any algorithm with oracle access to the stateful319

algorithm can be simulated by another algorithm with oracle access to the stateless one. We also require320

the security that an algorithm with access to the stateless oracle does not have extra power over one that321

has access to the stateful one.322

Definition 4 (Stateful to Stateless transformation). Let A be a family of stateful oracles {Ai}i∈Z. Gen is323

a stateful to stateless oracle transformation with respect to A if there is a family B = {Bj}j∈Z of stateless324

oracles such that:325

• Gen(1n, i) → (ρ, j) is an algorithm that takes as input a security parameter n as well as an index i326

that corresponds to the stateful oracle Ai and returns a quantum state ρ together with an index j that327

corresponds to the stateless oracle Bj.328

The transformation has to satisfy the following properties:329

Completeness. For any (polynomial time) algorithm C, there exists a (respectively polynomial time) sim-330

ulator S such that for any i ∈ Z, CAi ≡ SBj (ρ), where (j, ρ)← Gen(1n, i).331

Security. For any (polynomial time) algorithm C, there exists a (respectively polynomial time) time simula-332

tor S such that for any possibly auxiliary quantum state aux, which is a partial system that may be entangled333

with a reference system R, say trRãux = aux, and for any i ∈ Z,334

CBj ⊗ IR(1n, ρ⊗ ãux) ∼s SAi ⊗ IR(1n, ãux),

where (j, ρ)← Gen(1n, i).335

Here trR denotes the partial trace with respect to system R and IR denotes the identity on system R.336

4.1 The transformation337

Here we formally present the construction that transforms any polynomial time stateful oracle into a stateless338

one. Intuitively, the construction works as follows. Our new stateless oracle B has to take as input all the339

previous queries. In this way, we guarantee that B does not need to keep a state. On the other hand, we340

have to impose that B cannot be rewound, i.e., if the first query is x, then there is no way we can start B341

from the beginning with a query x′ 6= x. To achieve this, B is parameterized by a list s1, . . . , sq of secret342

keys for a DMAC, where q is the total number of queries. For each query xj , the calling algorithm has to343

also provide a tag tj for xj corresponding to the secret key sj . Before executing the query, B first verifies344

that the tags for all the queries are valid. If this is the case, then it runs all the queries one by one and345

returns the final outcome.346

Let A = {Ai}i∈Z = {Ci,j}i,j∈Z be the class of all polynomial time oracles, where Ci,j are the stateless347

oracles corresponding to Ai. Moreover, let (DMAC.Gen,DMAC.Tag,DMAC.Ver) be a secure DMAC. We348

define the class B = {B(s1,...,sq ,i)}s1,...,sq ,i in Figure 2.349

Clearly, B is a class of stateless oracles. Now, the generation algorithm Gen(1n, i) first runs (sj , ρj) ←350

DMAC.Gen(1n) for each j ∈ [q] and then returns ((s1, . . . , sq, i), ρ1 ⊗ . . .⊗ ρq).351

To argue completeness, let C be any algorithm that has access to the stateful oracle A. We will create a352

simulator S that takes as input the quantum state ρ1⊗ . . .⊗ ρq and has oracle access to the stateless oracle353

B. S initializes τ = 0 and the sequence S to be the empty sequence. Then it starts C and simulates C’s354

oracle as shown in Figure 3.355

Oracle(x)
τ ← τ + 1
t← DMAC.Tag(ρτ , x)
Append (x, t) on S and parse S as ((x1, t1), . . . , (xτ , tτ))
return B((x1, t1), . . . , (xτ , tτ))

Figure 3: The oracle that S simulates

8

B(s1,...,sq ,i)((x1, t1), . . . , (xτ , tτ))
if DMAC.Ver(sj , xj , tj) = 0 for some j ∈ [τ] then

return “Invalid tag”

state← ⊥
for j ∈ [τ] do

(y, state)← Ci,j(x, state)

return y

Figure 2: The class of stateless oracles B

Therefore, the completeness follows from that of the DMAC. We include the proof of security in Ap-356

pendix B.357

In terms of quantum resources, we need a DMAC for each state of the stateful oracle. Thus, for an358

oracle that accepts queries of length l and has m states, we need O(lmn) qubits, where n is the security359

parameter. In particular, for one-time programs we need O(ln) qubits and for one-time memories that store360

2 secrets, we need O(n) qubits (the query length is a single bit determining which of the two secrets we361

want to retrieve).362

5 Oracle one-time memories363

In this section we provide a definition of OTMs relative to an oracle. It is well known that it is impossible364

to achieve OTM even in the quantum world and even with computational assumptions in the plain model365

(without an oracle). In Appendix C we define one-time programs (OTP) again relative to an oracle.366

An OTM is a memory that stores k secrets s1, s2, . . . , sk but only one can be extracted. OTMs were367

first defined by Goldwasser and Rothblum [22] in order to construct OTPs. OTMs have then been studied368

extensively in the quantum setting, with Broadbent et al. [10] presenting a construction of quantum OTPs369

from quantum OTMs. Liu [27] has shown that OTMs are possible in the isolated qubits model, where370

each single qubit is manipulated by an adversary and those adversaries are allowed to communicate only371

classically.372

(Classical) oracle OTMs. Our definition below is inspired by the definition of Broadbent et al. [8].373

Definition 5 (Classical-oracle one-time memories). Let C = {Cj}j∈{0,1}∗ be a family of polynomial-sized374

classical circuits. A C-oracle one-time memory (C-OTM) scheme is a pair of polynomial-sized quantum375

algorithms (Gen,Extract) with the following properties:376

• Gen(1n, s1, s2, . . . , sk)→ (ρ, j) is an algorithm that takes as input k secret classical bit-strings s1, s2, . . . , sk,377

each of length n, and outputs a quantum state ρ that intuitively encodes the k secrets. In addition, it378

outputs an index j corresponding to the circuit Cj.379

• ExtractC(ρ, i) → s is an oracle algorithm that takes as input an index i and a quantum state ρ and380

makes a single oracle query to a circuit C. It outputs a classical bit-string s.381

A C-OTM satisfies the following security properties.382

Completeness. For any s1, s2, . . . , sk ∈ {0, 1}n, for any index i and for any (ρ, j) that is output by383

Gen(1n, s1, s2, . . . , sk), it holds that ExtractCj (ρ, i) = si.384

One-timeness. For any (polynomial time) adversary A there exists a (respectively polynomial time) simu-385

lator S, such that for any k bit-strings s1, s2, . . . , sk of length n and for any auxiliary (mixed) quantum state386

aux,387

ACj (1n, ρ⊗ aux) ∼s SOTs1,s2,...,sk (1n, aux),

where (ρ, j) ← Gen(1n, s1, s2, . . . , sk) and the distributions are over the coins of A,S, and Gen. The oracle388

OTs1,s2,...,sk on input i returns si and then halts.389

9

Similarly to the original terminology, we will refer to ρ derived as above, as a C-OTM with contents390

s1, s2, . . . , sk and oracle Cj ∈ C. We will also use OTM(s1, s2, . . . , sk) to denote the corresponding pair391

(ρ, Cj).392

Notice that this primitive is impossible to achieve in the classical world. Indeed, an adversary A with393

oracle access to C, given a classical bitstring ρ, can do the following trivial attack. First, copy the ρ into a394

new register ρ′. Then, run ExtractC(ρ, 0) and ExtractC(ρ′, 1) and return the two results. Clearly, this cannot395

be simulated by S.396

On the other hand, currently it is not clear whether this primitive is achievable in the quantum world.397

Now A cannot simply undo the computation since the oracle C works only classically and A has only oracle398

access to it.399

Remark: The above definition seems to be the most natural way to model classical stateless tokens. In400

practice the above definition can be instantiated by having a programmable trusted hardware that runs401

some code based on some secret information. For example, smartcards or Intel’s SGX could be a possible402

way to achieve such a hardware. Notice that obfuscating such an oracle and giving it to the adversary is403

not secure: since the adversary is given actual (albeit obfuscated) code in the form of a description of a404

quantum circuit with elementary quantum gates, it is always possible to reverse the gates and thus the405

whole computation.406

6 One-time Backdoored Devices407

In this section we demonstrate how one-time backdoors can provide a middle-ground solution to the smart-408

phone conundrum of privacy vs. law enforcement, thus addressing the original problem that motivated this409

paper. The original motivation is to create a system that allows a device (e.g., smartphone) vendor to embed410

in its devices a content locking mechanism, and create (and locally store) a disposable unlocking backdoor.411

The system should satisfy the following properties:412

Setup. There should be a setup algorithm that creates the code for the locking device and the relevant413

unlock backdoor.414

Confidentiality. No one (in particular, no QPT adversary) should be able to extract any information from415

the locked device without the backdoor. This should be true even if the adversary has (partial) knowledge416

about the keys and/or states of the unlocked devices and about the state of the locked devices.417

One-time unlock. Using the unlocking backdoor, the vendor should be able to unlock exactly one phone.418

In particular, it should not be able to use the backdoor to extract information from two locked devices.419

This should, again, be true even if the adversary has (partial) knowledge about the keys and/or states420

of the unlocked devices and about the state of the locked devices.421

(Non-interactive) Extendibility. The vendor should be able to program more (new) devices to be un-422

lockable with the disposable backdoor without resetting the entire system, or, in particular, interacting423

with the devices that are already set up and distributed.424

The above can be achieved by having a quantumly enabled vendor equipped with a stateless token and425

a classical set of devices. Note that we assume classical devices as it is unlikely that current technology will426

yield hand-held devices with quantum storage and computation capabilities any time soon. In addition, we427

do not assume that each device has a secure storage or trusted-hardware module. In fact, the adversary428

in our definition has full access on the state of the locked device and in particular could copy this state429

into a quantum computer, and perform a quantum attack. Looking ahead, such an attack will fail because430

the one-time memory where the relevant backdoor information is stored involves a token that can only be431

classically queried.432

Our system works as follows :433

The Setup Algorithm: Let N be the number of initial devices, denoted by D1, . . . , DN that the vendor434

wishes to set up, and (Gen,Enc,Dec) denote the key-generation, encryption, and decryption algorithms for435

a symmetric-key encryption scheme. Without loss of generality, we will assume the scheme to be IND-436

CPA-secure [4] as this will already provide us with the desirable confidentiality. Of course one can consider437

10

schemes with higher level of security, e.g., IND-CCA-security, if an application needs additional security438

guarantees. The vendor V performs the following steps to set up all the N devices:439

1. The vendor V uses the key generation algorithm Gen N times to generate N independent n-bit secret440

keys k1, . . . , kN (where n is the security parameter).441

2. The code of each Di contains the following locking procedure: Di has the key ki locally stored; to lock442

itself—e.g., if its user inputs incorrect pins too many times—Di uses Enc to encrypt its state with key443

ki and erases the key ki. Without loss of generality, we assume that in the locked state, the phone444

might accept a command to output its encrypted state.4445

3. V creates a 1-out-of-N OTM that encodes the keys k1, . . . , kN . Subsequently, the vendor erases the446

keys k1, . . . , kN from its local state (so that they only reside in the OTM) and also the coins used in447

their generation. Notice that, after the phone locks itself, the key is only available through the OTM,448

and even the vendor cannot extract the encryption key.449

Unlocking a Device with the backdoor: The vendor (or anyone in possession of the OTM) can use450

the OTM to unlock any locked device in a straightforward manner: To unlock Di, the vendor extracts the451

key ki from the OTM and uses it to decrypt the state.452

One can easily confirm the security of OTMs and the encryption scheme ensures that our protocol453

satisfies the properties required above, i.e., setup, confidentiality, and the one-time-unlock property: The454

fact that the setup algorithm achieves the setup guarantees follows directly by inspection of the protocol.455

Confidentiality follows directly from the CPA-security of the encryption scheme. Finally, the one-time-unlock456

property follows from the CPA-security of the encryption scheme and the security of the OTMs. Note that457

OTMs are assumed secure even with respect to any auxiliary information. Hence, (partial) knowledge about458

the state/keys of the unlocked devices or the state of the locked devices does not help the adversary to learn459

any information from the OTM about any key (or about the corresponding encrypted states) other than460

the extracted.461

6.1 Extendable OTMs462

To complete our analysis, we need to describe how to obtain non-interactive extendibility. In order to do463

this, we define in the following an extendable version of OTMs, which are memories that can be extended464

by adding more secrets into them. Using such memories, one can trivially add new devices in the system465

without interacting with existing devices by simply running the setup algorithm for the new devices and466

adding the new keys to the existing OTM, instead of storing them in a new OTM. We achieve this by having467

n (1-out-of-2) OTM for n secrets. Each (1-out-of-2) OTM i encodes two values. First, a random key ki.468

Second, the actual secret si xor’ed with all the previous keys k1⊕ . . .⊕ ki−1. Informally, in order to extract469

the secret si, we first need to extract all the keys kj for j < i, thus destroying all the previous OTM. In470

terms of quantum resources, we need O(n) qubits for each (1-out-of-2) OTM and thus O(i · n) qubits for a471

(1-out-of-i) OTM. We present the construction formally in the following.472

Extendable OTMs are OTMs that can be encapsulated with additional secrets. Correctness should473

guarantee that any of the up-to-now secrets encoded can be extracted, whereas security should guarantee474

that only one of these secrets can be extracted. In this section we will omit the oracles in notation to simplify475

the presentation.476

Definition 6 (Extendable one-time memories). An extendable one-time memory (EOTM) is an OTM477

augmented with an extra algorithm Extend as follows:478

• Extend(1n, ρ, s)→ ρ′ is an algorithm that takes as input a quantum state ρ encoding some secrets and479

a classical bit-string s of length n, and returns a quantum state ρ′ encoding the previous secrets plus s.480

The completeness and security extend trivially from the definitions of OTMs. In particular, in this481

case we want that for any (polynomial time) algorithm A that takes as input an EOTM encoding k secrets482

4It is assumed that the vendor can extract the encrypted state from the phone’s storage, anyway.

11

s1, . . . , sk to have a (respectively polynomial time) simulator that can compute anything that A can compute483

but with only oracle access to OTs1,...,sk , where OTs1,...,sk takes as input an index i, returns si and then484

halts.485

6.2 A black-box construction of EOTMs486

Our construction turns any OTM into an EOTM in a black-box manner. We give the intuition with an
example below that illustrates how to go from an OTM that encodes two secrets (the first line) to one that
encodes three secrets (the second line). We denote by OTM(s0, s1) the outcome of an one-out-of-two OTM
generation algorithm with input s0, s1.

OTM(s1, k1),OTM(s2 ⊕ k1, k2), k1 ⊕ k2
OTM(s1, k1),OTM(s2 ⊕ k1, k2),OTM(s3 ⊕ k1 ⊕ k2, k3), k1 ⊕ k2 ⊕ k3

One can see that we use the classical value of an OTM as a mask for the next secret and then we update487

the classical value by XORing it with a new key. Notice that in order to extract the value, say s3, we need488

to extract both k1 and k2 from the previous OTMs and thus we do not have the option to extract any of489

the other secrets.490

Formally, let (OTM.Gen,OTM.Extract) be an one-out-of-two OTM. In the following we omit the security491

parameter input 1n for simplicity. We create an EOTM (Gen,Extend,Extract) as shown in Figure 4.492

Gen(s1, s2)
k1, k2 ← {0, 1}n
return OTM.Gen(s1, k1)⊗ OTM.Gen(s2 ⊕ k1, k2), k1 ⊕ k2

Extend((ρ, k), s)
k′ ← {0, 1}n
return ρ⊗ OTM.Gen(s⊕ k, k′), k ⊕ k′

Extract((ρ1 ⊗ . . .⊗ ρi,), j)
k ← 0n

for l = 1 to j − 1 do
k ← k ⊕ OTM.Extract(ρl, 1)

return OTM.Extract(ρj , 0)⊕ k

Figure 4: Extendable OTM construction

Theorem 2. The construction above is an extendable OTM.493

Proof. Any algorithm with access to the OTM and an auxiliary input aux can be simulated, using a straight-494

forward hybrid argument, by one algorithm that has oracle access to the respective one-time OT oracles495

and is also given aux as input. Moreover, any such algorithm S can be easily simulated by an algorithm S′496

that has oracle access to the algorithm OTs1,...,sn (that on input i returns si and then halts) as follows. S′497

on input aux, starts S with input aux. If S queries oracle i with bit b = 1, S′ returns a random key ki. If498

S queries oracle i with bit b = 0, then S′ queries its oracle with value i. Upon getting answer si, it returns499

the value si ⊕ (
⊕

j<i kj), by fixing at random all the keys kj , j < i that have not been queried.500

Note that it is mandatory for the previous values of k to be erased and only the final one is kept. Indeed,501

if an adversary has continuous access to the previous classical values of the OTM, it can retrieve all the502

classical keys k1, . . . , k` without destroying the OTMs and thus it can retrieve all the secrets by always503

extracting the first part of the OTM and XORing it with the respective secret.504

7 Further applications505

Our stateful-to-stateless reduction has further applications in several other cryptographic areas.506

12

Encryption with Disposable Decryption backdoor In Appendix D we show how to extend the one-507

time backdoor paradigm to standard cryptographic primitives. Concretely, we look at the case of public-508

key encryption schemes with disposable decryption-backdoors and we show how we can construct them.509

We believe that cryptography with disposable backdoors can also be generalized to most cryptographic510

primitives with game-based security definitions. We leave considering such an extension and investigate511

further applications/implications as an open research direction.512

Physical computation. Fisch, Freund, and Naor [16, 17] introduced the notion of physical computation513

as a way for mutually untrustful parties to compute functions of physical inputs without revealing these514

inputs in the clear. This notion generalizes and formalizes the work by Glaser, Barak, and Goldston [20]515

which suggested applying zero-knowledge for proving that a nuclear weapon is authentic without revealing516

sensitive information about its design. As a necessary tool for the construction in [16, 17], they use a517

primitive called “disposable circuit”. These are hardware tokens that can be completely destroyed after518

one computation. In particular, this is a generalized version of tamper-proof tokens, where the tokens519

compute some function of their input together with some hardwired secret. Using our transformation, one520

can directly extend the above results and simply use any tamper-proof token to achieve a disposable circuit521

in the quantum world.522

Copy protection and digital rights managements (DRM). Persistent online authentication is a523

DRM technique where a software can only work as long as it is continuously connected to an online server.524

Such servers ask from the software to send some authenticated data and then respond with some data that525

allow the software to run. To eliminate the need for continuous communication, one could hardwire such a526

server into a (stateful) embedded device. However, such a system would be susceptible to resetting attacks.527

Using our transformation, one can, in theory, hardwire such a server into a stateless smartcard distributed to528

the users, and only periodically communicate the appropriate qubits with the users, thus achieving security529

without continuous connection.530

References531

[1] Scott Aaronson. Limitations of quantum advice and one-way communication. In Computational Com-532

plexity, 2004. Proceedings. 19th IEEE Annual Conference on, pages 320–332. IEEE, 2004.533

[2] Scott Aaronson. Quantum copy-protection and quantum money. In Computational Complexity, 2009.534

CCC’09. 24th Annual IEEE Conference on, pages 229–242. IEEE, 2009.535

[3] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Proceedings of the536

Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pages 41–60, New York,537

NY, USA, 2012. ACM.538

[4] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of539

security for public-key encryption schemes. In Hugo Krawczyk, editor, Advances in Cryptology —540

CRYPTO ’98, pages 26–45, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.541

[5] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based542

game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International543

Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May544

28 - June 1, 2006, Proceedings, pages 409–426, 2006.545

[6] C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin tossing.546

In Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, page547

175, 1984.548

[7] Charles H Bennett, Gilles Brassard, Seth Breidbart, and Stephen Wiesner. Quantum cryptography, or549

unforgeable subway tokens. In Advances in Cryptology, pages 267–275. Springer, 1983.550

13

[8] Anne Broadbent, Sevag Gharibian, and Hong-Sheng Zhou. Quantum one-time memories from stateless551

hardware. Cryptology ePrint Archive, Report 2015/1072, 2015.552

[9] Anne Broadbent, Sevag Gharibian, and Hong-Sheng Zhou. Towards quantum one-time memories from553

stateless hardware. arXiv preprint arXiv:1810.05226, 2018.554

[10] Anne Broadbent, Gus Gutoski, and Douglas Stebila. Quantum one-time programs - (extended abstract).555

In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,556

USA, August 18-22, 2013. Proceedings, Part II, pages 344–360, 2013.557

[11] James B. Comey. Transcripts from a public speech, Brookings In-558

stitution, Washington, D.C. https://www.fbi.gov/news/speeches/559

going-dark-are-technology-privacy-and-public-safety-on-a-collision-course.560

[12] Shalev Ben David and Or Sattath. Quantum tokens for digital signatures. arXiv preprint561

arXiv:1609.09047, 2016.562

[13] Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade, and Tobias Nilges. From stateful hardware to563

resettable hardware using symmetric ssumptions. In International Conference on Provable Security,564

pages 23–42. Springer, 2015.565

[14] Nico Döttling, Daniel Kraschewski, Jörn Müller-Quade, and Tobias Nilges. General statistically secure566

computation with bounded-resettable hardware tokens. In Yevgeniy Dodis and Jesper Buus Nielsen, ed-567

itors, Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Warsaw, Poland,568

March 23-25, 2015, Proceedings, Part I, volume 9014 of Lecture Notes in Computer Science, pages569

319–344. Springer, 2015.570

[15] Electronic Frontier Foundation (EFF). The crypto wars: Governments working to undermine encryp-571

tion. Technical Report, 2014. https://www.eff.org/files/2014/01/03/cryptowarsonepagers-1_572

cac.pdf.573

[16] Ben Fisch, Daniel Freund, and Moni Naor. Physical zero-knowledge proofs of physical properties. In574

International Cryptology Conference, pages 313–336. Springer, 2014.575

[17] Ben A Fisch, Daniel Freund, and Moni Naor. Secure physical computation using disposable circuits.576

In Theory of Cryptography Conference, pages 182–198. Springer, 2015.577

[18] Dmitry Gavinsky. Quantum money with classical verification. In Computational Complexity (CCC),578

2012 IEEE 27th Annual Conference on, pages 42–52. IEEE, 2012.579

[19] Marios Georgiou and Iordanis Kerenidis. New constructions for quantum money. In LIPIcs-Leibniz580

International Proceedings in Informatics, volume 44. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,581

2015.582

[20] Alexander Glaser, Boaz Barak, and Robert J. Goldston. A zero-knowledge protocol for nuclear warhead583

verification. Nature, 510:497–502, 2014. See also article by R. Stone (Science, June 2014).584

[21] Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge university585

press, 2009.586

[22] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-time programs. In Annual Interna-587

tional Cryptology Conference, pages 39–56. Springer, 2008.588

[23] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme secure against adaptive589

chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.590

[24] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia. Founding cryp-591

tography on tamper-proof hardware tokens. In Daniele Micciancio, editor, Theory of Cryptography, 7th592

Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings,593

volume 5978 of Lecture Notes in Computer Science, pages 308–326. Springer, 2010.594

14

https://www.fbi.gov/news/speeches/going-dark-are-technology-privacy-and-public-safety-on-a-collision-course
https://www.fbi.gov/news/speeches/going-dark-are-technology-privacy-and-public-safety-on-a-collision-course
https://www.fbi.gov/news/speeches/going-dark-are-technology-privacy-and-public-safety-on-a-collision-course
https://www.eff.org/files/2014/01/03/cryptowarsonepagers-1_cac.pdf
https://www.eff.org/files/2014/01/03/cryptowarsonepagers-1_cac.pdf
https://www.eff.org/files/2014/01/03/cryptowarsonepagers-1_cac.pdf

[25] Jonathan Katz. Universally composable multi-party computation using tamper-proof hardware. In Moni595

Naor, editor, Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Conference596

on the Theory and Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007,597

Proceedings, volume 4515 of Lecture Notes in Computer Science, pages 115–128. Springer, 2007.598

[26] Arash Khamooshi. Breaking down Apple’s iPhone fight with the U.S. Government. The599

New York Times, 2016. https://www.nytimes.com/interactive/2016/03/03/technology/600

apple-iphone-fbi-fight-explained.html?_r=0.601

[27] Yi-Kai Liu. Single-shot security for one-time memories in the isolated qubits model. In Advances in602

Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa Barbara, CA, USA, August603

17-21, 2014, Proceedings, Part II, pages 19–36, 2014.604

[28] Tomohiro Ogawa and Hiroshi Nagaoka. Making good codes for classical-quantum channel coding via605

quantum hypothesis testing. IEEE Transactions on Information Theory, 53(6):2261–2266, 2007.606

[29] Fernando Pastawski, Norman Y Yao, Liang Jiang, Mikhail D Lukin, and J Ignacio Cirac. Unforgeable607

noise-tolerant quantum tokens. Proceedings of the National Academy of Sciences, 109(40):16079–16082,608

2012.609

[30] Michael S. Schmidt and Richard Perez-Pena. F.B.I. treating san bernardino attack as610

terrorism case. The New York Times, 2015. https://www.nytimes.com/2015/12/05/us/611

tashfeen-malik-islamic-state.html.612

[31] Andreas Winter. Coding theorem and strong converse for quantum channels. IEEE Transactions on613

Information Theory, 45(7):2481–2485, 1999.614

A DMAC construction615

Here we include the construction of disposable message-authentication codes as defined by Ben-David and616

Sattath [12] which builds upon the construction of Aaronson and Christiano [3]. Let H be the n-qubit617

Hadamard operator. For a subspace A ⊆ Fn2 , let A⊥ be its orthogonal complement.618

Gen(1n)
Pick a random subspace A ⊆ Fn2 of dimension n/2 uniformly over all the (n/2)-dimensional sub-

spaces of Fn2
Let ρ = |ψ〉〈ψ|, where |ψ〉 = 1√

|A|

∑
v∈A |v〉, that is, |ψ〉 is a uniform superposition of all the

vectors in A.
return (A, ρ)

Tag(ρ, b)
if b = 0 then

Measure ρ in the computational basis and return the outcome
else

Measure HρH† in the computational basis and return the outcome

Ver(A, b,v)
if b = 0 then

return v ∈? A
else

return v ∈? A⊥

The completeness of the scheme follows easily from [3, Lemma 21]. The security of the scheme follows619

directly from [12, Theorem 16]. In particular, it is proved that any (even computationally unbounded)620

quantum adversary that is given as input ρ, needs an exponential number of queries to the verification621

oracle in order to find a vector in A and a vector in A⊥.622

15

https://www.nytimes.com/interactive/2016/03/03/technology/apple-iphone-fbi-fight-explained.html?_r=0
https://www.nytimes.com/interactive/2016/03/03/technology/apple-iphone-fbi-fight-explained.html?_r=0
https://www.nytimes.com/interactive/2016/03/03/technology/apple-iphone-fbi-fight-explained.html?_r=0
https://www.nytimes.com/2015/12/05/us/tashfeen-malik-islamic-state.html
https://www.nytimes.com/2015/12/05/us/tashfeen-malik-islamic-state.html
https://www.nytimes.com/2015/12/05/us/tashfeen-malik-islamic-state.html

B Security analysis of stateful-to-stateless transformation623

To argue security, we create a simulator S that takes as input an auxiliary state aux and has oracle access624

to the algorithm A. S first creates q pairs of DMAC keys s1, . . . , sq together with their quantum states625

ρ1, . . . , ρq. Then S starts C ⊗ IR with input ρ1⊗ . . .⊗ ρq ⊗ ãux, where trRãux = aux. Moreover, S simulates626

the oracle B as shown in Figure 5. During the simulation, S initializes two empty lists Q,A whose size627

increases at the same time. Informally, Q will contain the longest sequence of queries x1, . . . , x|Q| that have628

a valid tag. A will contain the corresponding answers that the algorithm A replies. We denote by Qi the629

i-th element of Q and similarly for A.630

Bsim((x1, t1), . . . , (xτ , tτ))
if DMAC.Ver(sj , xj , tj) = 0 for some j ∈ [τ] then

return “Invalid tag”

if (x1, . . . , xτ) is a prefix of Q then
return Aτ (no need to query A)

if Q is not a prefix of (x1, . . . , xτ) then
return ⊥

l← |Q|+ 1
for i ∈ [l, τ] do
Qi ← xi (i.e. append xi to Q)
Ai ← A(xi) (i.e. append the answer to A)

return Aτ

Figure 5: The oracle Bsim that S simulates

Note that if the execution reaches the line return ⊥, then the adversary will be able to tag two messages631

using the same key.632

Notice that if C is computationally unbounded but limited to a polynomial number of queries, then S633

has to be also computationally unbounded.634

Let E be the event that the line return ⊥ is executed. Let q′ be the number of queries C makes to its
oracle B and let also {(x1j , t1j), . . . , (xτjj , tτjj)}j∈[q′] be the queries. Equivalently, this event can be defined
as the event that C makes two queries with different messages in some position i and the corresponding tags
are both valid:

E ={∃j, j′ ∈ [q′], i ∈ [q] : xij 6= xij′

∧ DMAC.Ver(si, xij , tij) = 1

∧ DMAC.Ver(si, xij′ , tij′) = 1}.

Then, our simulator works exactly as C except for the event E; i.e., for any output o, any n ∈ Z and635

any auxiliary quantum state aux, it holds that636 ∣∣∣Pr[CB(s1,...,sq,i) ⊗ IR(1n, ρ1 ⊗ . . .⊗ ρq ⊗ ãux) = o]− Pr[SAi ⊗ IR(1n, ãux) = o]
∣∣∣ ≤ Pr[E].

Now, suppose that there exists an adversary C, value n ∈ Z and quantum state aux such that Pr[E] ≥ e(n)637

for some non-negligible function e. We use C to create an adversary C ′ against the DMAC. C ′ takes as input638

a quantum state ρ and has oracle access to the algorithm V (·, ·). It starts by picking a random position639

i∗ ← [q]. In this position, C ′ will plug in the quantum state ρ. For simplicity we rename ρ as ρi∗ . Moreover,640

C ′ creates q − 1 pairs (si, ρi) ← DMAC.Gen(1n) for i ∈ [q] − {i∗}. Then C ′ ⊗ IR runs C ⊗ IR with input641

(ρ1 ⊗ . . . ⊗ ρq ⊗ ãux) and simulates the oracle B as shown in Figure 6. As before C ′ has to keep two lists642

Q,A that are initialized to the empty lists.643

Informally, C ′ runs by simulating the stateless oracle and at the same time looking for a pair of inputs644

that can break the challenge DMAC. For the queries that do not correspond to i∗, C can use its own secret645

16

Bsim((x1, t1), . . . , (xτ , tτ))
if DMAC.Ver(sj , xj , tj) = 0 for some j ∈ [τ]− {i∗} then

return “Invalid tag”

if i∗ ≤ τ and V (xi∗ , ti∗) = 0 then
return “Invalid tag”

if (x1, . . . , xτ) is a prefix of Q then
return Aτ (no need to query A)

if Q is not a prefix of (x1, . . . , xτ) and xi∗ 6= Qi∗ then
Stop simulation and return (xi∗ , ti∗ ,Qi∗ , t∗)

else
Abort

if i∗ ≤ τ then
t∗ ← ti∗ (remember the first tag)

l← |Q|+ 1
for i ∈ [l, τ] do
Qi ← xi (i.e. append xi to Q)
Ai ← A(xi) (i.e. append the answer to A)

return Aτ

Figure 6: The oracle Bsim simulated by C ′.

key. For the ones that correspond to i∗, the simulator uses its verification oracle V . If the adversary ever646

submits two different sequences of queries such that they are not a prefix of each other, then the simulation647

stops. With probability 1/q the sequences will differ on the i∗-th position, in which case C ′ will be able to648

break its challenge.649

We can see that AdvDMAC
C′ = Pr[E]/q ≥ e(n)/q, which implies that C ′ breaks the DMAC game with650

non-negligible probability by using only polynomially many queries to the verification oracle.651

C One-Time Programs652

In this section we define one-time programs (OTP) [22, 10] relative to an oracle and we show formally how653

we can build them using our stateful-to-stateless oracle transformation. As they are a generalization of654

OTMs, OTPs are also impossible in the quantum plain model (without oracles).655

(Classical) oracle one-time programs. In the following we define oracle OTPs, which are programs656

that can be run exactly once. To overcome the impossibility, we allow OTPs access to a classical oracle with657

classical interface. Our definition is inspired by the definition of Broadbent et al. [8].658

Definition 7 (Classical Oracle one-time Programs). Let C = {Cj}j∈{0,1}∗ , C′ = {C ′j′}j′∈{0,1}∗ be two classes659

of polynomial-sized classical circuits. A (C, C′)−one-time program (denoted as (C, C′)−OTP) is a pair of660

algorithms (Gen,Extract) with the following properties:661

• Gen(1n, j) → (ρ, j′) is an algorithm that takes as input a security parameter n and an index j and662

outputs a quantum state ρ and an index j′.663

• ExtractC(ρ, x)→ y is a quantum algorithm that takes as input a quantum state ρ and a classical input664

x and has oracle access to a circuit C. It outputs a bit-string y.665

An OTP satisfies the following two properties.666

Completeness. For any n ∈ Z, any j ∈ {0, 1}n and any input x, it holds that

Extract
C′

j′ (ρ, x) = Cj(x),

17

where (ρ, j′)← Gen(1n, j).667

Security. For any (polynomial time) adversary A, there exists a (respectively polynomial time) simulator668

S, such that for any n ∈ Z, any j ∈ {0, 1}n and any quantum auxiliary (mixed) quantum state aux,669

A
C′

j′ (1n, ρ⊗ aux) ∼s SOTj (1n, aux),

where (ρ, j′) ← Gen(1n, j) and the distributions are over the coins of A,S, and Gen. The oracle OTj on670

input x returns Cj(x) and then halts.671

C.1 One-time program construction672

Using our general transformation of stateful to stateless oracles, it is easy to create OTPs relative to a673

classical oracle. To see this, notice that any algorithm with oracle access to an OTP can be turned into an674

algorithm that has oracle access to a stateless version of an OTP together with a quantum state.675

In the following we formally prove this idea. The reader can feel free to skip the formal proof without676

missing important details.677

Let C = {Ci} be the class of polynomial-sized classical circuits. Moreover, let OTi be the one-time678

version of the circuit Ci, i.e., OTi on input x returns Ci(x) and then halts. Let Gen′ be the transformation679

from Section 4 with respect to the class {OTi}i. In other words, Gen′ turns the class of stateful algorithms680

{OTi}i into the class of stateless algorithms B = {Bj}j . Let ρ be the quantum state output by Gen′. Let681

DOTi
x be an algorithm with oracle access to OTi that returns OTi(x). In other words, Dx queries its oracle682

OTi with the value x and returns the result. By the completeness of the stateful-to-stateless transformation,683

there exists an algorithm Sx such that684

DOTi
x ≡ SBj

x (ρ),

where (j, ρ)← Gen′(1n, i). Our goal is to create a (C,B)−OTP (Gen,Extract). We define the two algorithms685

in fig. 7.686

Gen(1n, i)
return Gen′(1n, i)

ExtractB(ρ, x)
return SBx (ρ)

Figure 7: One-time Program construction

Notice that the simulator Sx with oracle access to Bj indeed returns the value Ci(x), and hence the com-687

pleteness follows. One-timeness follows directly from the security of the stateful-to-stateless transformation.688

For any (polynomial time) quantum adversary A there exists a (respectively polynomial time) quantum689

simulator S′ such that for any auxiliary quantum state aux, it holds that690

ABi(1n, ρ⊗ aux) ∼s S′OTi(1n, aux).

Remark 1 (From single use to limited-use (e.g., constant-times) backdoors). Our definitions of one-time691

(and disposable-backdoor) primitives trivially extend to the many-time cases. However, the corresponding692

constructions are not trivial. In other words, we cannot just create an n-time primitive by outputting n one-693

time primitive. To see this, consider the case of multi-bit DMACs. If we have two copies of the quantum694

state for tagging each bit, we can tag both 0 and 1 for each position of a bit-string, and this makes it trivial695

to tag any bit-string. To overcome this we use again our stateful to stateless oracle reduction. In other696

words, we can consider a stateful program that allows only n runs and then turn it into a stateless one.697

Since n-time memories and n-time message authentication codes are a special case of an n-time program,698

we get the corresponding primitives. In order to keep our constructions easy to read, we restrict this paper699

to the one-time versions.700

18

D Encryption with Disposable Decryption backdoor701

Our goal in this section is to turn any CCA encryption scheme into a one-time backdoored one in the sense702

that one can have access to a quantum backdoor that can be used only once to perform decryptions.703

First, we give a general encryption definition. We then extend this definition to its one-time backdoored704

version. The backdoored version should satisfy three properties. First, it should satisfy the correctness of705

the original scheme. Second, it should satisfy the correctness of the backdoor, i.e., the backdoor correctly706

decrypts a ciphertext. Last, in the security game, the adversary is given additionally a quantum backdoor707

and its goal is to now break two challenges.708

Definition 8 (Encryption). An encryption scheme consists of three algorithms E = (Gen,Enc,Dec) with709

the following properties:710

• Gen(1n)→ (ek, dk) is a key-generation algorithm that takes as input a security parameter n and returns711

an encryption key and a decryption key. In the case of symmetric encryption dk = ek.712

• Enc(ek,m) → c is the encryption algorithm that takes as input the encryption key and a message m713

and returns a ciphertext c.714

• Dec(dk, c)→ m is the decryption algorithm that takes as input the decryption key and a ciphertext and715

returns a message m or ⊥.716

Completeness. E is complete if717

Pr[Dec(dk,Enc(ek,m)) = m] = 1,

where the randomness is over (ek, dk)← Gen(1n).718

Security is defined via a code-based game G [5] between a challenger and an adversary A, where A is719

given access to some oracles as shown below. The adversary begins by calling the oracle Init, which returns720

an encryption key. Then the adversary is allowed to call the oracles Enc, Dec and Chal and in the end721

it calls the oracle Fin, which finally outputs a bit. For an adversary A, let AdvCCAA =
∣∣Pr[Fin = 1]− 1

2

∣∣ for722

the security game defined in Figure 8.723

Security. E is secure if for any polynomial time quantum adversary A it holds that724

AdvCCAA ≤ negl(n).

19

Oracle Init(1n)
b← {0, 1}
S ← ∅
(ek, dk)← Gen(1n)
return ek

Oracle Enc(m)
return Enc(ek,m)

Oracle Chal(m0,m1)
c∗ ← Enc(ek,mb)
return c∗

Oracle Dec(c)
S ← S ∪ {c}
return Dec(dk, c)

Oracle Fin(b′)
if c∗ 6∈ S then

return b = b′

else
return ⊥

Figure 8: Standard CCA security

The above definition captures both public-key and secret-key encryption. In the case of secret-key725

encryption, the oracle Enc is not redundant. A more general definition that captures both public-key726

encryption and identity-based encryption is also possible. Moreover, it could be possible to abstract the727

definition even more in order to capture signatures or ideally any cryptographic primitives. We reserve such728

a definition and its corresponding one-time backdoor construction for a future work.729

Encryption with disposable backdoors. An encryption scheme with a disposable backdoor is an en-730

cryption scheme augmented so that the generation algorithm produces also a quantum backdoor β as well731

as a description of a classical oracle. Moreover, the scheme has an additional algorithm Rec that uses the732

backdoor to decrypt a ciphertext.733

Definition 9 (Encryption with disposable backdoors). Let C = {Ck}k∈{0,1}∗ be a family of polynomial-sized734

classical circuits. A C-backdoored encryption scheme (C-Back) consists of algorithms (Gen,Rec,Enc,Dec)735

with the following properties:736

• Gen(1n) → (ek, dk, β, k) is a key-generation algorithm that takes as input a security parameter n and737

returns an encryption-key ek, a decryption-key dk, a quantum state β, and an index k to a circuit Ck.738

• RecC(β, c)→ m is a “one-time decryption” algorithm that takes as input a backdoor β and a ciphertext739

c and returns a message m or ⊥. Rec has also oracle access to a classical circuit C.740

• Enc(ek,m) → c is the encryption algorithm that takes as input the encryption key and a message m741

and returns a ciphertext c.742

• Dec(dk, c)→ m is the decryption algorithm that takes as input the decryption key and a ciphertext and743

returns a message m or ⊥.744

Completeness. C-Back is complete if745

Pr
(ek,dk,β,k)←Gen(1n)

[Dec(dk,Enc(ek,m)) = m] = 1,

and moreover,746

Pr
(ek,dk,β,k)←Gen(1n)

[RecCk(β,Enc(ek,m)) = m] = 1.

20

Oracle Init(1n)
b0, b1 ← {0, 1}
S ← ∅
(ek, dk, β, k)← Gen(1n)
return (ek, β)

Oracle Enc(m)
return Enc(ek,m)

Oracle Chal0(m0,m1)
c∗0 ← Enc(ek,mb0)
return c∗0

Oracle Chal1(m0,m1)
c∗1 ← Enc(ek,mb1)
return c∗1

Oracle Dec(c)
S ← S ∪ {c}
return Dec(dk, c)

Oracle C(x)
return Ck(x)

Oracle Fin(b′0, b
′
1)

if c∗0 6∈ S and c∗1 6∈ S then
return b0 = b′0 and b1 = b′1

else
return ⊥

Figure 9: One-time backdoored CCA security

The security game is similar to the original one, with the additional property that the adversary is given747

one backdoor and has to break two challenges as shown in the game below. Notice that an adversary, who748

just uses the backdoor to decrypt one challenge and then guesses the other, has a probability of 1/2 to749

win. Moreover, notice the adversary is also given access to the classical oracle Ck. For an adversary A, let750

AdvBCCAA :=
∣∣Pr[Fin = 1]− 1

2

∣∣ in the security game defined in Figure 9.751

Security. C-Back is secure if for any polynomial time quantum adversary A it holds that752

AdvBCCAA ≤ negl(n).

Notice that BCCA security also implies CCA security if we do not give any backdoor to the adversary.753

Indeed, if an adversary was able to break the CCA security of the scheme, it could be used to devise another754

adversary that breaks BCCA. This new adversary would first use its backdoor to find the bit b0 and then755

use the CCA adversary to find b1.756

D.1 Constructing Encryption with Disposable Backdoor757

Here we show how to construct Encryption with disposable Backdoor using oracle OTPs. As we have shown758

above, oracle OTPs are possible in the plain model. The idea is to use the OTP generation algorithm759

with input the description of the decryption algorithm. In other words, all we have to do is to create a760

one-time version of the decryption algorithm and this will be our backdoor. Let G′ = (Gen′,Enc′,Dec′) be761

an IND-CCA secure encryption scheme. Let D = {Ddk}dk be the class of polynomial-sized circuits such762

that Ddk(m) = Dec′(dk,m). We have shown above how to construct OTPs for any class of polynomial-sized763

circuits, and thus, in particular for D. Therefore, let (OTP.Gen,OTP.Extract) be a (D, C)−OTP for some764

21

Gen(1n)
(ek, dk)← Gen′(1n)
(β, k)← OTP.Gen(dk)
return (ek, dk, β, k)

RecC(β,m)
return OTP.ExtractC(β,m)

Enc(ek,m)
return Enc′(ek,m)

Dec(dk, c)
return Dec′(dk, c)

Figure 10: Encryption with disposable backdoor construction

class of circuits C = {Ck}k. We create a C-backdoored encryption scheme G = (Gen,Rec,Enc,Dec) as shown765

in Figure 10.766

Theorem 3. G is a C−backdoored encryption scheme.767

Proof. The two completeness properties are trivially satisfied by invoking the completeness property of768

the original encryption scheme and the completeness property of the OTP.769

To argue security, note that an adversary A with a backdoor β can be simulated by a simulator S who770

has access to an additional stateful oracle that decrypts only once and does not add this ciphertext to the771

set of queried ciphertexts. In this step, the decryption key dk is considered as the auxiliary state. Call G1772

the game played by S. Now an adversary S who can win this game can easily be turned into an adversary773

A′ that breaks CCA. A′ simulates S’s oracles Init,Enc,Dec by calling its own oracles. A′ will pick a774

random bit b and when S calls its oracle Chal(b) with messages m0,m1, A
′ will use its own challenge oracle775

with input m0,m1. It will get a ciphertext c∗b and will forward this answer to S. When S calls its oracle776

Chal(1−b) then A′ will encrypt at random one of the two messages using its own encryption oracle; call this777

ciphertext c∗1−b. When S calls its one-time decryption oracle, there are three cases. If S queries c∗b , then A′778

will reply either m0 or m1 with probability 1/2. If S queries c∗1−b, then A′ will reply with the corresponding779

plaintext since A′ knows which message it corresponds to. If S queries any other ciphertext, then A′ will780

use its own decryption oracle. Since A′ picks the bit b at random, there is at most 1/2 probability that S781

will not query its one-time decryption oracle with the ciphertext c∗b . Finally, when S makes a guess between782

m0,m1, A
′ will return the same guess.783

Suppose that there exists a non-negligible function e(n) such that784

AdvBCCAA ≥ e(n).

Then by the security of OTP, for the advantage AdvG1
S of S to win the modified game G1, it holds that785

AdvG1
S ≥ e(n)− negl(n).

Thus the advantage of A′ in the CCA game is786

AdvCCAA′ ≥
1

2
· AdvG1

S ≥
1

2
· e(n)− negl(n),

which is non-negligible.787

22

	Introduction
	Overview of our techniques
	Related Literature
	Organization of the Paper

	The model
	Disposable MACs
	Reducing stateful to stateless oracles
	The transformation

	Oracle one-time memories
	One-time Backdoored Devices
	Extendable OTMs
	A black-box construction of EOTMs

	Further applications
	DMAC construction
	Security analysis of stateful-to-stateless transformation
	One-Time Programs
	One-time program construction

	Encryption with Disposable Decryption backdoor
	Constructing Encryption with Disposable Backdoor

