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Abstract

We define the notion of one-shot signatures, which are signatures where any secret key can be used
to sign only a single message, and then self-destructs. While such signatures are of course impossible
classically, we construct one-shot signatures using quantum no-cloning. In particular, we show that such
signatures exist relative to a classical oracle, which we can then heuristically obfuscate using known
indistinguishability obfuscation schemes.

We show that one-shot signatures have numerous applications for hybrid quantum/classical crypto-
graphic tasks, where all communication is required to be classical, but local quantum operations are
allowed. Applications include one-time signature tokens, quantum money with classical communica-
tion, decentralized blockchain-less cryptocurrency, signature schemes with unclonable secret keys, non-
interactive certifiable min-entropy, and more. We thus position one-shot signatures as a powerful new
building block for novel quantum cryptographic protocols.
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1 Introduction

Quantum computing and quantum information promise to reshape the cryptographic landscape. In the near
term, quantum computers will be able to break much of the cryptography currently used today [Sho97],
with the field of post-quantum cryptography developing new alternative protocols. On the other hand,
quantum cryptography will leverage quantum communication to open new possibilities such as information-
theoretically secure key agreement [BB84], physically unclonable money [Wie83], and more.

Yet, even in a world full of quantum computers, classical cryptosystems and communication will still play
a fundamental role. The unclonability of quantum data, for example, means that tasks such as backing up
a quantum hard drive or forwarding a quantum email (while still keeping the original) will be impossible.
Even in a world where quantum computing is commonplace, it may be infeasible to run a quantum computer
in many computing environments, such as mobile or embedded devices. It may also be some time before our
communication infrastructure is updated to support the transfer of quantum data; besides, most data users
will care about is still classical, so it may seem as overkill to use quantum information to send such data.
With classical communication, however, most of the exciting developments from quantum cryptography
become unusable. This then leads to the following natural question:

When exchanging only classical information, can local quantum
computing still offer advantages over purely classical systems.

In some cases, the answer is certainly negative. For example, information-theoretic key agreement [BB84]
is impossible with classical communication, even if local quantum operations are allowed. Indeed, in quantum
key distribution, security is only obtained because the honest parties can detect if the adversary is eaves-
dropping; on the other hand, with classical communication, the adversary can listen to the communication
undetected. Another related example is information-theoretic key recycling [OH05, DPS05, GYZ17].

Hybrid quantum/classical cryptography. On the other hand, in an emerging field that we will call
hybrid quantum/classical cryptography — or hybrid quantum cryptography for short — it has been shown
that local quantum operations can yield an advantage in some settings. Recent work has shown how to
attain certifiable randomness expansion [BCM+18], which enables a classical client, for whom generating
true randomness is a notoriously difficult task, to verifiably outsource the generation of random bits to a
quantum computer, which can generate random bits easily. This task is closely related to the goal of quan-
tum supremacy — demonstrating that quantum computers can solve certain problems faster than classical
computers — which has recently gained much attention. Certifiable randomness has also been extended to
certifying arbitrary outsourced quantum operations, again using only a classical client [Mah18].

Given the importance of classical communication in a quantum world, we anticipate such hybrid protocols
to complement post-quantum and quantum cryptography and become a third pillar of active research at
the intersection of cryptography and quantum computing. Our goal in this work is therefore to provide new
foundational tools for this emerging area and develop novel applications.
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1.1 Motivating Example: Signature Tokens

Consider the task of signature delegation: Alice wishes to allow Bob to sign a single message on her behalf.
Alice could just give Bob her secret key, but this would allow Bob to sign any number of messages. Alice
instead wants to give Bob enough information to ensure that Bob can subsequently sign a single arbitrary
message, without any further action on Alice’s part. Crucially, we want the message to only be decided after
Alice hands this information to Bob.

Of course, this task is impossible in a purely classical world, as Bob can re-use whatever information he
learned from Alice to sign any number of messages. One could hope that Alice could provide Bob with a
quantum signing token, which self-destructs after signing a message. By quantum no-cloning — which says
that general unknown quantum states cannot be copied — Bob cannot copy the token, and therefore can
only sign a single message. Indeed, Ben-David and Sattath [BDS16] show that such quantum signing tokens
are possible by building on ideas for public key quantum money [AC12].

No-cloning with only classical communication? But what if we insist on classical communication
between Alice and Bob1? How can we leverage the power of no-cloning, when any information Alice sends
to Bob can be copied ad nauseam? It would seem that if Bob can derive a signing token from their
communication, he can simply copy the communication transcript to derive as many distinct signing tokens
as he would like.

The issue is actually very general, and is potentially problematic in any hybrid quantum protocol. After
all, quantum no-cloning and related concepts can be seen as the foundation for essentially all of the novel
features in quantum protocols. But now, what if we insist on only classical communication, relegating all
quantum operations to local computation? This means that any application of no-cloning applies to states
that the adversary constructed entirely on his own. How can we guarantee no-cloning, if the adversary
controls the entire process used to generate the state in the first place? Why can’t the adversary just run
the same process twice, generating two copies?

Perhaps surprisingly, we will demonstrate that with a single classical back-and-forth between Alice and
Bob, Alice can send Bob a single-use quantum signature token. In doing so, we demonstrate how to overcome
the difficulty outlined above and leverage no-cloning in a setting where all communication is classical.

A Toy Example. How is this possible? To illustrate how classical communication might be combined with
local no-cloning, we recall a basic scenario described by Zhandry [Zha19], which also underlies the recent
developments in certifiable randomness/quantum computation [BCM+18, Mah18]. Let H be a many-to-one
hash function that is collision-resistant against quantum attacks. First, generate a uniform superposition
of inputs. Next, compute the hash H in superposition and measure the result, obtaining a value y. The
original state collapses to the superposition |ψy〉 of all pre-images x of y.

Using the above procedure, it is easy to sample states |ψy〉. However, at the same time it is impossible
to sample two copies of the same |ψy〉, assuming the collision-resistance of H. Indeed, assume toward
contradiction that it were possible to generate two identical copies of |ψy〉. Then simply measure both
copies; each measurement will likely yield a different x, resulting in two distinct values mapping to the same
y, a contradiction.

A First Attempt. As a first attempt at a signature delegation protocol, we have Bob sample a pair
(|ψy〉 , y), and send the classical value y to Alice. Alice then signs y using some standard post-quantum
signature scheme, sending the resulting signature σ back to Bob. The result is that, with only classical
communication between Alice and Bob, Bob has arrived at a value (|ψy〉 , y, σ) that he cannot clone (due to
the collision resistance of H), nor can he sample on his own (due to needing Alice’s signature on y).

Of course, we have to also describe how (|ψy〉 , y, σ) can be used to sign a single message, but not
two. For general hash functions H, there is likely no meaningful way to accomplish this. For example,
if the hash function is collapsing [Unr16a], then having |ψy〉 is essentially no more useful than having a
single classical pre-image x. But of course a classical pre-image x cannot be used as a one-time signing
token, since it can be copied. Recent evidence suggests that typical post-quantum hash functions are likely
collapsing [Unr16a, LZ19].

1We will not even allow shared entanglement, which could be used in teleportation.
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Toward a solution, we observe that our protocol so far bears resemblance to the chameleon signatures of
Krawczyk and Rabin [KR00]. Here, H is replaced with a special type of hash function, called a chameleon
hash. In such a hash function, Bob knows a trapdoor T which allows him to “open” the hash y to any message
m′ of his choosing. In particular, given y and any message m′, Bob can find an r′ such that H(m′, r′) = y.

We immediately see that chameleon hashing provides a partial solution to signature tokens. Indeed, Bob
can choose the hashing key H together with a secret trapdoor T , and send Alice any hash y, which Alice
then signs using her signing key. To sign a message m, Bob can then use the trapdoor to open y to any
message m, computing an r such that H(m, r) = y. Finally, Bob can then output (m, r, y, σ) as the signature
on m. The recipient will verify Alice’s signature on y and that H(m, r) = y.

This certainly works for delegating signatures. It is also mimics how signing authority is delegated in
practice, where instead of signing a hash, Alice would sign the a public key for Bob’s signature scheme. But
this standard delegation mechanism of course cannot provide the one-time property we are looking for, as it
is purely classical. Indeed, unforgeability relies on the collision resistance of H, which means Bob can break
unforgeability using his trapdoor. In particular, Bob can re-use his trapdoor as many times as he wishes,
opening y to any number of messages of his choice.

Our Solution: one-shot chameleon hashing. To remedy this issue, we imagine that Bob has a variant
of chameleon hash functions, where any given trapdoor can be used only a single time. Specifically, we
want that the hash function remains collision resistant even to Bob. In more detail, we define a one-shot
chameleon hash function as a hash function H with the following property: it is possible to first sample a
hash y together with a one-time quantum trapdoor |T 〉. Then, after seeing a message m, it is possible to
use the trapdoor |T 〉 to sample r such that H(m, r) = y. Importantly, anyone can sample a y, |T 〉 pair, and
H is collision resistant to everyone. This implies that once |T 〉 is used to compute r, it must self-destruct,
preventing further openings. This in particular implies that |T 〉 cannot be classical, else it could be copied
as many times as Bob would like.

Notice that all communication — namely y and σ — is classical. We also stress that we want H to be
a classical function. As such, Bob’s quantum operations are entirely local. What’s more, Bob is the only
party that is running a quantum computer; Alice can be purely classical.

Generalization: one-shot signatures. We can even abstract the protocol above slightly, to work with
a more general object called one-shot signatures. Here, anyone with a quantum computer can sample a
classical public key pk, together with quantum secret key |sk〉. Given |sk〉 and a message m, it is possible to
compute a classical signature r on m. Then anyone, knowing just the public key, can verify signatures. For
security, we require that it is infeasible to compute a tuple (pk,m0, r0,m1, r1) such that m0 6= m1, and r0

and r1 are valid signatures of m0,m1 respectively, with respect to the public key pk. We see that one-shot
chameleon hashing is just a special case of one-shot signatures where verification simply evaluates H(m, r),
and checks that the result is pk.

Remark 1. Note that one-time signatures — signatures whose security is only guaranteed when used to sign a
single message — are well known classically [Lam79], and can be built from the simplest tools in cryptography,
namely one-way functions. For one-time signatures, the signer should sign only a single message, else they
risk revealing their secret key. However, with one-time signatures, there is nothing actually preventing the
signer from signing two or more messages, if they decide it is advantageous to do so. With a one-shot
signature, in contrast, no matter what the signer does or what security he is willing to give up, he can only
ever sign a single message. This difference is the crucial feature of one-shot signatures.

At this point, it should be un-obvious that one-shot signatures can even exist. After all, one-shot
signatures can be seen as an extremely strong variant of the quantum no-cloning theorem. The original
no-cloning theorem dealt with truly unknown quantum states, which were useless to anyone who did not
know the states, and therefore for whom no-cloning applied. Public key quantum money [Aar09] can be seen
as a strengthening, where no-cloning still holds even for parties that have the ability to verify the state. Even
this verifiable version of no-cloning has been notoriously difficult to achieve. Quantum lightning is then a
further strengthening, where no-cloning holds even for parties that devised the original state themselves; the
only existing construction is that of Zhandry [Zha19], which is based on new ad hoc hardness assumptions.
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One-shot signatures can then be interpreted as yet a further strengthening of quantum lightning where the
un-clonable state has been endowed with the ability to sign a message. Given the difficulty in even achieving
the weaker forms of no-cloning, it is natural to wonder whether one-shot signatures are even possible.

1.2 Our Results

In this work, we explore applications similar to the above, where local quantum operations yield surprising
new protocols with classical communication. Our central building blocks will be one-shot signatures and
one-shot chameleon hash functions. Our results are as follows:

One-shot signatures and one-shot chameleon hashing (Sections 2,3,4). As our first contribution,
we give formal definitions for one-shot signatures and one-shot chameleon hashing.

We also construct one-shot chameleon hashing, and hence one-shot signatures. We observe that prior
work essentially constructs this object [ARU14], but only relative to a quantum oracle2, and there is no
known way to instantiate the oracle. We improve on this by demonstrating a classical oracle (but query-
able in superposition) relative to which we can build one-shot chameleon hashing and signatures. Even
finding a plausible classical oracle to build one-shot chameleon hashing exists is highly non-trivial. Our main
idea is to start from a hash function which is periodic. Such a function is certainly not collision resistant
against quantum attacks due to quantum period finding, but at least it is straightforward to show that
it gives rise to the chameleon property we need. We then recursively divide the set of pre-images of each
output into another periodic function. Importantly, we choose different periods for each set of pre-images
to avoid the overall function becoming periodic. In fact, we perform this recursive division several times,
each time using a different period for each set of pre-images. We demonstrate that this recursive structure
nevertheless preserves the chameleon property. We prove that our one-shot chameleon hashing is collision
resistant relative to this oracle using a modification of the polynomial method. Our classical oracle can then
heuristically be obfuscated using post-quantum indistinguishability obfuscation (e.g. [BGMZ18]) to yield a
plausible construction in the common reference string model.

Signature delegation. We then turn to applications. Many of our applications can be seen as applications
of our signature delegation mechanism above. We demonstrate that our signature delegation protocol works,
and can easily be delegated multiple times, with Bob delegating to Charlie, who delegates to Dana, etc. The
overall signature is the entire signature chain from Alice to the final signer.

Budget Signatures (Section 4). We can also delegate to pairs of public keys. Such delegation allows
us, for example, to construct budget signatures. Here, when signing a message, we specify a budget b > 0.
Each public key will come with a total budget B, and the security property is that Bob can sign any number
of messages, so long as the total budget remains less than B.

In our scheme, the public key for a total budget B will simply be the pair (pk, B) where pk is the public
key for a one-shot signature. To sign a message m with budget b at most the total budget B, simply sign
m using the one-shot secret key, using up the secret key. Alternatively, one can delegate to two budget
signature public keys pk0, pk1 with budgets B0, B1 respectively, where B0 + B1 ≤ B. To do so, simply sign
the concatenation of the two public keys. Those budget signatures can then be recursively used to sign with
budgets B0, B1. When verifying the signature relative to pk0, additionally verify the signature on pk0, pk1

relative to pk, as well as that B0 +B1 ≤ B. Since we know pk0 can only sign with budget up to B0 and pk1

can only sign with budget up to B1, this verification guarantees pk can only sign with budget total budget
up to B0 +B1 ≤ B. In typical usage, we imagine that to sign a message with budget b, we will first invoke
this delegation with B0 = b and B1 = B − b, and then sign m with respect to pk0, using the secret key in
the process. Further messages are signed with respect to pk1.

Remark 2. We note that with our delegation scheme, the size of signatures grows with the depth of the
delegation. For our budget signatures, this is potentially problematic if large numbers of messages, and hence
delegations, are expected, as it implies a large secret key and signature size. Similar limitations hold for
many of our protocols below based on our delegation mechanism. In this work, we will for the most part

2That is, an oracle which performs a quantum operation on its input state
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ignore this issue. However, we observe that by using a (post-quantum) succinct non-interactive argument
of knowledge (SNARK) (e.g. [COS19]), one can prove knowledge of the long signature chain using a short
digest. This allows our budget signature scheme to have short signatures. Of course, in order to generate the
SNARK, one must remember the signature chain, and therefore the secret key must still be large. By using
a recursively composable SNARK, which allows for proving statements that include the SNARK verifier, we
can also compress the secret key of our scheme, by only ever remembering a SNARK of the signature chain.
We note that it is common to conjecture that SNARKs can be recursively composed for a polynomial number
of times [BSCTV14, Lab17], and a similar idea has been used to build cryptocurrency with a constant-sized
blockchain [Lab17]. Recursively composable SNARKs can also be used in our other delegation-based protocols
to compress key/signature sizes.

Quantum money with classical communication (Section 5). One-shot signatures readily yield public
key quantum money, where the mint has a public key that allows anyone to verify. Basically, the quantum
signing key |sk〉 for a one-shot signature serves as the quantum money state.

Using our signature delegation mechanism, we show how to send quantum money using only classical
messages. The mint’s public key will be the public key for a classical post-quantum signature scheme. To
mint a banknote with value V , the mint simply creates a secret key/public key pair (|sk〉 , pk) for a one-shot
signature scheme, and signs the pair (pk, V ) using it’s classical signature scheme to get signature σ. Sending
the note to someone simply invokes our delegation procedure. By combining with our budget signatures,
our quantum money scheme is also infinitely divisible, unlike existing constructions.

Decentralized blockchain-less cryptocurrency (Section 5.4). One-shot signatures also immediately
give rise to quantum lightning, yielding the first construction with provable security relative to a classical
oracle. As explained by Zhandry [Zha19], by combining with a suitable proof of work, quantum lightning
gives a decentralized cryptocurrency, where the double-spend problem is solved using no-cloning as opposed
to a blockchain. Zhandry’s scheme, however, requires quantum communication.

We combine our delegation scheme with proofs of work to give blockchain-less cryptocurrency using only
classical communication. The basic idea is that, to mint a new note, the miner generates a secret key/public
key pair for a one-shot signature scheme. Then the miner uses the public key as the challenge in a proof of
work. The completed proof of work and the key pair constitute the note. Spending the note just involves
our delegation mechanism, except that for the first transaction, the miner appends the proof of work to the
message he signs.

Ordered Signatures (Section 6). Here, when signing a message, one also specifies a tag t. The signing
key allows for signing any message, but the requirement is that messages can only be signed in order of
increasing t. That is, once a message is signed at tag t0, it then becomes impossible to sign a message at a
“past” tag t1 < t0.

Our construction is very simple: the public key will be the public key for a one-shot signature scheme.
To sign a message at tag t, simply construct a new one-shot signature public key/secret key pair (pk, |sk〉),
and delegate to the new public key. When signing to delegate, sign the entire public key/tag/message triple.
|sk〉 becomes the new secret key, and the signature consists of the entire signature chain from the original
public key to the latest public key. To verify, simply verify the signature chain, as well as verify that the
tags in the chain occur in increasing order. The idea is that, by the one-shot security of our signatures,
the only way to produce a new signature is to append to the signature chain. Therefore, once an adversary
produces a signature at tag t0, he has committed to all the signatures he will produce at tags t1 < t0. If he
tries to sign a different message at t1, this will constitute a fork in the chain, violating the one-shot security
property.

Ordered signatures allow one to provably destroy their signing key by signing a dummy message at time
∞. Or one can at provably update their key by dividing time into epochs, and signing a dummy message at
the end of an epoch to update to the next epoch.

As a toy application, we imagine priority for patent applications could be based on documentation of
the invention, signed by the inventor with a timestamp. Alice wants to share her invention with Bob, but
is worried that Bob will try to pass off the invention as his own. With classical signatures, there is nothing
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preventing an unscrupulous Bob from creating phony documentation after his conversation with Alice, and
then backdating to make it appear that he invented first. With ordered signatures, however, Alice can insist
that Bob first send her a signed message at the current time t. By the ordered signature property, she is
guaranteed that Bob cannot backdate any phony documentation to before time t, therefore guaranteeing her
priority.

Single-signer Signatures (Section 6.2). Here, the secret key is subject to quantum no-cloning, meaning
that at any time, only a single user is capable of signing with respect to a given public key. Our ordered
signatures readily give such single-signer signatures, by simply having the tag t be a counter, incremented
with each signature. Security is proved as follows: toward contradiction, if one could split a secret key into
two states such that each state is independently capable of signing, then it is impossible to guarantee any
order between the signatures produced by each state, breaking the underlying ordered signature.

Of course, this signing capability can be transferred by sending over the quantum secret key; our signa-
tures can also easily be transferred with only classical communication, again using our delegation mechanism.

We observe that single-signer signatures can be seen as yet a further strengthening of quantum no-
cloning. Whereas one-shot signatures endow the unclonable state with the functionality of signing message,
the functionality can only be used a single time before the state self-destructs. Single-signer signatures
instead give the unclonable state the perpetual ability to sign an unlimited number of messages, but this
ability cannot be split amongst two parties.

Delay Signatures (Section 6.3). Adding proofs of sequential work (PoSW) to our ordered signature
construction, we obtain what we call delay signatures, where the signer must wait a certain amount of time
between signing messages.

As a potential application we imagine combining delay signatures with our quantum money scheme. The
result is that the mint can only mint new currency at a certain rate. This would prevent an untrusted
government from paying debts by simply minting unlimited money.

Proofs of quantumness (Section 7.1). One-shot signatures easily give rise to a proof of quantumness:
to prove quantumness, generate a public key for a one-shot signature scheme, and send it to the verifier.
The verifier then chooses and sends back a random message. Respond with a signature on the message. A
simple rewinding argument shows that any classical adversary that passes verification can be used to sign
two messages with respect to the same public key, violating one-shot security.

Interestingly, our proofs of quantumnes are public coin, meaning soundness holds even if the verifier’s
random coins are public. Such protocols can be made non-interactive using the Fiat-Shamir heuristic.
Prior protocols [BCM+18] are interactive and secret coin, and there is no obvious way to turn them into
non-interactive protocols.

Certifiable Randomness (Section 7.2). Our proofs of quantumness also immediately give rise certifiable
min-entropy, which is again public coin and can be made non-interactive with Fiat-Shamir. Again, prior
protocols required multiple rounds3.

1.3 Related Literature

Comparing our primitives with classical primitives. Most of the cryptographic notions in this work
can be thought of as “one-shot” versions of existing classical cryptographic primitives. One-shot chameleon
hash functions generalize the classic equivalent introduced by Krawczyk and Rabin [KR00]. Our one-shot
signatures are the one-shot analogue of one-time signatures by Lamport [Lam79] in the sense that one
not only is unwilling to generate a second signature but also he is unable to. Our chain of delegations,
our quantum money scheme and our ordered signatures use components from the Naor-Yung paradigm for
building full-blown signatures out of one-time signatures [NY89] and our budget signatures shares similarities
with the Merkle signatures [Mer89].

3Though the prior protocols are able to achieve (statistically close to) uniform randomness. In contrast, as explained by
Zhandry [Zha19], any non-interactive protocol can never achieve uniform randomness. Our protocol achieves super-logarithmic
min-entropy.
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Quantum Query Complexity. Our query complexity lower bound uses elements from Ambainis’s ad-
versary method [Amb02], as well as techniques for building public-key quantum money by Aaronson and
Christiano [AC12] and tokens for digital signatures by Ben-David and Sattath [BDS16]. Our construction of
equivocal hash functions relative to a classical oracle extends the pick-one trick by Ambainis et al. [ARU14]
and implies the existence of quantum lightning by Zhandry [Zha19]. Interestingly, unlike previous results, our
collision resistance lower bound is not based on the polynomial method [BBC+01]. The polynomial method
works well in proving indistinguishability between oracles but little can be done when it comes to search
problems. Indeed, proving that a function is collision resistant through indistinguishability from injective
functions immediately implies that it is collapsing!

Collapsing Hash Functions. The construction of equivocal hash functions from standard assumptions
is a highly non-trivial task as shown by a line of works. Unruh [Unr16b] introduced the notion of collapsing
hash functions and proved that the random oracle is collapsing. Since then, several works have proven that
numerous collision resistant hash functions from standard assumptions are collapsing [Unr16a, CBH+18,
LZ19] and thus not equivocal.

Cryptocurrencies. Our decentralized cryptocurrency construction and its extensions share similarities
with blockchain constructions such as Bitcoin’s mining using proof of work [N+08] as well as Ethereum’s
concept of smart contracts [W+14]. Mining in the quantum world has also gained attention in the recent
years. Although Grover’s algorithm can be used to obtain a quadratic speed-up over classical computers
for the problem of finding pre-images that map to small hashes in the random oracle model, Aggarwal et
al. [ABL+17] have proven that there exist hash-functions with smaller than quadratic speed-up.

Quantum Money. Quantum money, first introduced by Wiesner [Wie83], has received a lot of attention
the past decade with numerous results in the secret-key setting, where the bank must be involved in ver-
ification. Gavinsky [Gav12] has proven that quantum money where the coins are minimally entangled is
possible in this setting. Radian and Sattath [RS19] recently created a secret key quantum money scheme
where the minting algorithm is also classical; they called this notion semi-quantum money. However, for
their protocol, spending the money still involves sending a quantum state, and verification requires the mint.
Farhi et al. [FGH+10] have shown that public-key quantum money where the verification is a projective
measurement onto a 1-dimensional subspace is impossible without high entanglement. As a result, since
one-shot signatures imply such a quantum money definition, secret keys have to be highly entangled.

One-time Memories. Signature delegation can be thought of as the authentication analogue of decryption
delegation, known in the literature as one-time memories, introduced by Goldwasser et al. [GKR08]. These
are memories that allow one to extract a single secret out of them. Unlike signature delegation, one-time
memories are impossible even in the quantum world, and even relative to a (quantum) oracle. This is because
extraction is a deterministic process and, hence, the information-disturbance tradeoff principle implies that
such an extraction does not collapse a quantum state.

Proof of Quantumness. Private coin proofs of quantumness out of standard post-quantum assumptions
have already been proposed in the literature. Brakerski et al. [BCM+18] have proven that under the LWE
assumption, there is a private coin interactive protocol for proof of quantumness.

Multi-device protocols. As a precursor to the more recent hybrid quantum protocols, Colbeck [Col09]
proposed a setting where a classical experimenter interacts with multiple potentially untrustworthy quantum
devices, with the guarantee that the devices cannot communicate. As in our protocols, all interaction
is classical. However, Colbeck’s protocol, in addition to requiring multiple non-communicating devices,
inherently relies on the quantum devices having pre-shared entanglement in order to operate. Therefore, the
quantum part of the protocol is not truly local.
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1.4 Notation

Below we will use calligraphic font to represent quantum algorithms (e.g. Alg) and calligraphic font and/or
the bracket notation for (mixed) quantum states (e.g. sk for a quantum secret key or |ψ〉). We will use
standard math or sans serif font to represent classical algorithms (e.g. A or Alg) and classical variables (e.g.
x for a classical one-letter variable or pk for a classical public key). A function f : Z→ R+ is called negligible
if f(n) = o(n−c) for any constant c. We denote by x ← S the random variable x generated by sampling
uniformly at random from the set S. Similarly, we denote by x ← D the random variable x generated by
sampling according to the distribution D.

Common Reference String Model. As is the case with quantum lightning [Zha19], a common reference
string is necessary for all primitives we describe in this work. This is for the same reason we require a common
reference string in collision resistant hash functions: for a fixed function there always exists an adversary
that knows a collision. In the definitions below we assume that this common string is drawn uniformly at
random. This is the ideal scenario and does not require any public parameters generator. In some cases, for
example when the common reference string describes an obfuscated algorithm, a parameters generator may
be necessary. In this case, this generator may hide a secret trapdoor which it destroys after publishing the
common reference string.

2 Equivocal Collision Resistant Hash Functions

In this section we define the new notion of equivocal collision-resistant hash functions and we give a con-
struction relative to a classical oracle.

Definition 1 (Equivocal Hash-Functions). An equivocal hash function family is a triple of algorithms
(Gen ,Eval,Equiv) with the following syntax:

Gen(crs) : (h, sk , p) takes as input a common reference string crs and returns a hash value h, a quantum
secret key sk and a description of a predicate p.

Eval(crs, x) : h takes as input a crs and a pre-image x and outputs a hash value h.

Equiv(sk , b) : x takes as input a quantum secret key sk and a bit b and returns a pre-image x.

Correctness requires that the following holds with overwhelming probability. If (h, sk , p)← Gen(crs) then for
any bit b, it holds that Eval(crs, x) = h and p(x) = b, where x← Equiv(sk , b).

The above definition states that a quantum algorithm (Gen ,Equiv) can sample an image h, a secret
“inversion” quantum key sk as well as a predicate p as a polynomial size circuit, and later on, given any bit
b, it can use this key to find a pre-image x of h such that p(x) = b. It is important to notice that if we also
require collision resistance, then quantumness is necessary. If the secret key were classical, then by running
Equiv twice with b = 0 and b = 1 we could find a collision. In the quantum case, running Equiv can make sk
collapse and thus impossible to reuse.

Theorem 1. There exists an equivocal collision resistant hash function relative to a classical oracle.

In section 2.1 we define our scheme relative to a classical oracle. In sections 2.2 and 2.3 we prove the
collision resistant and the equivocal property respectively.

Levels of Security of Hash Functions. Here we aim to compare different notions of security of hash
functions. We study the following three definitions of a hash function H in order of increasing security:

1. Collision resistant: no efficient adversary can come up with x0, x1 such that H(x0) = H(x1).

2. Unequivocal: no efficient adversary can come up with an image h and a predicate p and later on, given
a bit b, find a pre-image x such that H(x) = h and p(x) = b.

3. Collapsing: no efficient adversary can distinguish the following oracles:
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• MeasureOutput(
∑
x ax |x〉): Given the quantum state

∑
x ax |x〉 apply H on superposition to get

the state
∑
x ax |x〉 |H(x)〉. Then measure the second register to get |ψ0〉 ∝

∑
x:H(x)=h ax |x〉 |y〉

and return |ψ0〉.
• MeasureInput(

∑
x ax |x〉): Given the quantum state

∑
x ax |x〉, measure it to get a random x and

return |ψ1〉 = |x〉 |H(x)〉.

It is easy to see that (3) implies (2) and (2) implies (1). Indeed, if one is able to find a collision x, x′ such
that xi 6= x′i for some i, then by picking the predicate p(x) = xi, one can break the unequivocal property.
Moreover, if one can find an image h that later they can invert at will, then it can distinguish |ψ0〉 from
|ψ1〉, since |ψ1〉 = |x〉 |H(x)〉 already fixes a pre-image x such that p(x) = b and thus cannot be used to find
x′ such that p(x′) = 1− b.

Zhandry [Zha19] shows that a hash function that is (1) but not (3) gives quantum lightning. Here, we
show that a hash function that is (1) but not (2) has even more applications.

In the process of coming up with an equivocal collision resistant hash function in the plain model, we
note that it is enough to come up with a function that breaks the unequivocal property with an inverse
polynomial probability. Given such a function H, we can easily boost to high success probability by running
it independently n times. In particular, the function Hn(x1, . . . , xn) = (H(x1), . . . ,H(xn)) is equivocal
according to our definition. Let A be an adversary that breaks property (2). By running n times A we get
values h1, . . . , hn and predicates p1, . . . , pn. We define our predicate p(x1, . . . , xn) as the majority of pi(xi).
To equivocate to a bit b, we simply equivocate each individual hash to b. By invoking the Chernoff bound
and choosing n large enough, we are guaranteed that we get a pre-image x = x1, . . . , xn such that p(x) = b
with overwhelming probability.

An interesting question that arises is whether (2) implies (3); namely, can we use a distinguisher against
the collapsing property to build an inverter that equivocates? Although searching solutions looks like a
harder task than just distinguishing two different states, the above implications are not excluded.

2.1 Construction relative to a classical oracle

In this section we define our function family relative to a classical oracle. The oracle is a combination of two
oracles H,H⊥ where H is the evaluation oracle and H⊥ is used to achieve equivocality. In our construction,
the space of n-bit inputs is partitioned into 2n/2 affine spaces of dimension n/2. The oracle H assigns
a distinct output to each space. Applying H to a uniform superposition and measuring yields a uniform
superposition over one of the affine subspaces. To achieve the equivocal property, a second oracle H⊥ is be
provided, which tests for membership in the spaces orthogonal to the affine spaces in H.

Before defining our construction we introduce some terminology. For the n-dimensional space Fn2 , a d-
ordered affine partition P = (Ay)y∈{0,1}n−d is a list of 2n−d pairwise disjoint affine subspaces of dimension

d. For an affine subspace A, we denote A⊥ the orthogonal complement of the linear subspace corresponding
to A.

Definition 2 (Affine partition function). Let P = (Ay)y∈{0,1}n/2 be an n/2-ordered affine partition. An

affine partition function (HP , H
⊥
P ) is defined as:

• HP : Fn2 → {0, 1}n/2 such that HP (x) = y if and only if x ∈ Ay,

• H⊥P : Fn2 × {0, 1}n/2 → {0, 1} such that H⊥P (x, y) = 1 if and only if x ∈ A⊥y .

In other words, our function is parameterized by an ordered partition of the whole n-dimensional input
space into affine subpsaces, each containing 2n/2 points such that all points in the same subspace Ay map to
the same value y. Our claim is that there exists an affine partition that requires exponentially many queries
to find a collision.

Theorem 2. There is an affine ordered partition P = (Ay)y∈{0,1}n/2 such that HP is an equivocal collision

resistant hash function relative to the oracle (HP , H
⊥
P ).

Notice that the above theorem claims worst-case hardness. We prove the two parts of this theorem in
the following two subsections. In subsection 2.2 we prove our query complexity lower bound for collisions
and in subsection 2.3 we prove equivocality.
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2.2 Collision Resistance

Our collision resistance lower bound uses a modification of the inner-product adversary method [Amb02,
AC12] and follows the lines of [BDS16]. We devise a relation between hard-to-distinguish partitions and we
prove that any algorithm that finds a collision must end up in states such that their average inner product
(over the relation) is a constant away from 1. The relation is picked in such a way that the average inner
product cannot decrease by more than an exponentially small amount in each query.

We will use the following generalization of Ambainis’s [Amb02] basic adversary method. It combines the
inner product adversary method by Aaronson and Christiano [AC12] with Lemma 18 by Ben-David and
Sattath [BDS16].

Theorem 3 (Adversary method for search problems). Let S ⊂ {0, 1}N be a set of inputs of size N , p : S → T
be a search problem and let R ⊂ S × S be a symmetric relation between inputs. For any x ∈ S, let
Rx = {y ∈ S : (x, y) ∈ R}. If

1. (Hard-to-distinguish (x, y) pairs). For every x appearing in R and every i : xi = 0, Pry←Rx
[yi = 1] ≤ ε,

2. (Distinguishing solutions s). For every x appearing in R and every s : s ∈ p(x), Pry←Rx
[s ∈ p(y)] ≤ c,

then any quantum algorithm that solves p with an inverse polynomial in logN probability must make at least

Ω
(

1−
√
c−d√
ε

)
queries to the input, where d ∈ (0, 1].

Proof. Consider an input x ∈ {0, 1}N and suppose that an algorithm A makes T queries; i.e., A =
UTOxUT−1Ox · · ·U1OxU0, where U1, . . . , UT are arbitrary unitary transformations independent of x and
Ox |i〉 = (−1)xi |i〉. Let |φxt 〉 , |ψxt 〉 be the states of the algorithm before after the t’th query to Ox. In the
beginning |ψx1 〉 is the same for all x since A has not made any query to Ox. The final state of the algorithm
is |φxT 〉.

Consider the progress measure pt = E(x,y)←R [|〈φxt |φ
y
t 〉|] and observe that p1 = 1. We will prove that

condition 1 implies that a single query cannot decrease the progress measure too much and condition 2
implies that anyone that finds a solution with good probability after T queries should end up having a
progress pT at least a constant less than 1.

We begin by proving that pt−1 − pt ≤ 4
√
ε. The proof in a more general setting, where the oracles can

be reflections across subspaces, first appeared in [AC12] but we include it here for completeness.
Write

|φxt 〉 =
∑
i∈[N ]

αxt,i |i〉
∣∣φxt,i〉

where
∑
i∈[N ]

∣∣αxt,i∣∣2 = 1 and notice that

〈φxt |φ
y
t 〉 =

∑
i∈[N ]

αxt,iα
y
t,i

〈
φxt,i
∣∣φyt,i〉 .

After we query Ox our new state becomes

|ψxt 〉 =
∑
i:xi=0

αxt,i |i〉
∣∣φxt,i〉− ∑

i:xi=1

αxt,i |i〉
∣∣φxt,i〉

and thus
〈φxt |φ

y
t 〉 − 〈ψxt |ψ

y
t 〉 = 2

∑
i:xi 6=yi

αxt,iα
y
t,i

〈
φxt,i
∣∣φyt,i〉 .

Moreover, by the triangle inequality, we have that

|〈φxt |φ
y
t 〉| − |〈ψxt |ψ

y
t 〉| ≤ |〈φxt |φ

y
t 〉 − 〈ψxt |ψ

y
t 〉|

≤ 2
∑

i:xi 6=yi

∣∣αxt,i∣∣∣∣αyt,i∣∣

11



Lemma 1 (Small progress [AC12]). If for every x appearing in R and every i : xi = 0, Pry←Rx [yi = 1] ≤ ε,
then pt−1 − pt ≤ 4

√
ε.

Proof. By taking expectations, we get

pt−1 − pt = E
(x,y)←R

[|〈φxt |φ
y
t 〉|]− E

(x,y)←R
[|〈ψxt |ψ

y
t 〉|]

≤ E
(x,y)←R

[|〈φxt |φ
y
t 〉 − 〈ψxt |ψ

y
t 〉|]

≤ 2 E
(x,y)←R

 ∑
i:xi 6=yi

∣∣αxt,i∣∣∣∣αyt,i∣∣


= 4 E
(x,y)←R

 ∑
i:xi=0,yi=1

∣∣αxt,i∣∣∣∣αyt,i∣∣


≤ 2
√

1/ε E
(x,y)←R

 ∑
i:xi=0,yi=1

∣∣αxt,i∣∣2
+ 2

√
ε E

(x,y)←R

 ∑
i:xi=0,yi=1

∣∣αyt,i∣∣2


= 2
√

1/εmax
x

E
y←Rx

 ∑
i:xi=0,yi=1

∣∣αxt,i∣∣2
+ 2

√
ε max

(x,y)∈R

∑
i:xi=0,yi=1

∣∣αyt,i∣∣2
≤ 2
√

1/εmax
x

ε+ 2
√
ε

= 4
√
ε,

where the 5th lines comes from Jensen’s inequality and the 8th line comes from the fact that

max
x

E
y←Rx

 ∑
i:xi=0,yi=1

∣∣αxt,i∣∣2
 ≤ max

x,i:xi=0
Pr

y←Rx

[yi = 1] ≤ ε

We continue by showing that any algorithm that finds a solution with constant probability should achieve
pT that is a constant away from 1. The following Lemma is a trivial generalization of Lemma 18 by Ben-David
and Sattath [BDS16].

Lemma 2. Let R be a symmetric relation between inputs x ∈ {0, 1}N and let p : {0, 1}N → {0, 1}O(logN)

be a search problem. Suppose that an algorithm computes p with probability at least 1− d after T queries. If
maxx,s∈p(x) Pry←Rx

[s ∈ p(y)] ≤ c, then

pT ≤
√
c+ 2

√
d.

Proof. We decompose the final state of the algorithm |φxT 〉 = |φx〉 into correct and wrong outputs:

|φx〉 = |Gx〉+ |Bx〉

where |Gx〉 =
∑
s∈P (x) a

x
s |ψxs 〉 |s〉 , |Bx〉 =

∑
s6∈P (x) a

x
s |ψxs 〉 |s〉 and ||Bx〉| ≤

√
d.

The absolute value of the inner product between any two states corresponding to inputs x, y is

|〈φx|φy〉| ≤ |〈φx|Gy〉|+
√
d

≤ |〈Gx|Gy〉|+
√
d

≤
∑

s∈P (x)∩P (y)

|axs ||ays |+ 2
√
d.
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By the same analysis as above, we get

E
(x,y)←R

 ∑
s∈P (x)∩P (y)

|axs ||ays |

 ≤ max
x,s∈P (x)

√
Pr

y←Rx

[s ∈ P (y)]

≤
√
c,

and therefore that
E

(x,y)←R
[|〈φx|φy〉|] ≤

√
c+ 2

√
d

By combining the above lemmata 1 and 2, we conclude that any algorithm that finds a solution with

probability at least 1− d, has to make at least Ω
(

1−
√
c−2
√
d√

ε

)
queries to the input.

It remains to show that any algorithm that succeeds with probability at least 1/p(n), where n = logN ,
for some polynomial p, can be turned into an algorithm that succeeds with probability close to 1. Indeed,
by running our algorithm p(n)q(n) times, where q(n) is a polynomial, we get a winning probability of
1− (1− 1/p(n))p(n)q(n) ≈ 1− e−q(n) which is exponentially close to 1. Notice that the repetition reduces the
lower bound by a polynomial factor of p(n)q(n). This concludes the proof of theorem 3.

Equipped with theorem 3, we can derive the first part of theorem 2; i.e., the existence of a partition that
is collision resistant.

Theorem 4. There is an affine ordered partition P = (Ay)y∈{0,1}n/2 such that HP is a collision resistant

hash function relative to the oracle (HP , H
⊥
P ).

Proof. In our case, S = ΣFn
2 × {0, 1}Fn

2×2n/2

, where Σ = {0, 1}n/2 is the range of HP , T = Fn2 × Fn2 and the
search problem is defined as col(HP , H

⊥
P ) = {(a, b) : HP (a) = HP (b) ∧ a 6= b}.

Define the relation R such that ((HP , H
⊥
P ), (HQ, H

⊥
Q )) ∈ R if and only if for each y ∈ {0, 1}n/2, dim(APy ∩

AQy ) = n/2− 1, where P = (APy )y∈{0,1}n/2 . Fix an image y and a point p ∈ APy . It holds that

Pr
Q←RP

[p ∈ AQy ] =

∣∣APy \AQy ∣∣∣∣Fn2\APy ∣∣ =
2n/2−1

2n − 2n/2
≤ 1

2n/2

Moreover, any collision p 6= q ∈ APy forms a one-dimensional affine subspace C = {p, q} ≤ APy . We can see

that the probability Prq←RP
[C ≤ AQy ] equals to the probability that {0, q+p} belongs to the linear subspace

AQy + p. We have that

Pr
Q←RP

[C ≤ AQy ] = Pr
Q←RP

[{0, p+ q} ≤ AQy + p] =

(
n/2−1
n/2−2

)
2(

n/2
n/2−1

)
2

=
2n/2−1 − 1

2n/2 − 1
≤ 1

2
,

where
(
n
k

)
q

=
∏k−1
i=0

1−qn−i

1−qk−i is the Gaussian binomial coefficient that counts the number of k-dimensional

linear subspaces in Fnq .

By invoking theorem 3 we get a collision lower bound of Ω
(
2n/4

)
.

2.3 Equivocality

In this subsection we prove the equivocal property. In short, Gen samples a uniform superposition of pre-
images of a random image y by evaluating the oracle on the superposition of all elements in the domain and
measuring the output register. Equiv runs a fixed-point Grover’s search using the orthogonal oracle.

We define our algorithms Gen ,Equiv as follows. Gen first prepares the uniform superposition over all
inputs |φ〉 = 2−n/2

∑
x∈Fn

2
|x〉, then evaluates the oracle to get the state |ψ〉 = 2−n/2

∑
x |x〉 |HP (x)〉 and
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finally measures the second register and gets |Ay〉 = 2−n/4
∑
x∈Ay

|x〉 |y〉 for a uniformly random y. |Ay〉
corresponds to the secret quantum key sk and y is the corresponding image. Now, given sk and any bit b,
the goal of Equiv is to find a pre-image x ∈ Ay such that x1, the first bit of x, equals b.

Of course, for such an algorithm to work correctly it should be the case that Ay contains both x’s that
start with 0 and x’s that start with 1. Since our complexity lower bound is for a worst case partition, it
could be the case that all x’s in the same affine subspace start with the same bit. To overcome this, we
note that if (HP , H

⊥
P ) is an affine partition function that is collision resistant, then for any full-rank linear

transformation f , the function (HP ′ , H
⊥
P ′), where P ′ = (A′y)y∈{0,1}n/2 and A′y = {f(x) : x ∈ Ay} is also

a collision resistant affine partition function. By applying a random linear transformation f , we retrieve a
random affine subspace A. As long as one of the basis vectors in the corresponding linear subspace has 1
in its first coordinate, half of the elements in the linear subpspace will start with 0. The probability that a
random subspace does not have a vector starting with 1 is 2−n/2 since it has to be the case that none of the
n/2 basis vectors starts with 1.

Theorem 5 (Equivocality). There is an affine ordered partition P such that HP is an equivocal collision
resistant hash function relative to the oracle (HP , H

⊥
P ).

Proof. Fix a P such that HP is collision resistant and apply a random full-rank linear transformation on
it. It suffices to show that given |Ay〉 and y as well as access to the oracle H⊥P , we can find an x such that
x ∈ Ay and x1, the first bit of x, starts with the bit of our choice. Let Ay,b = {x ∈ Ay : x1 = b} and notice
that Ay,0 is an affine subspace parallel to Ay,1. We first condition on |Ay,0| = |Ay,1| since the probability of
the event not happening is negligible. Our goal now is to run Grover’s search algorithm in order to transform
our state |Ay〉 into the state |Ay,b〉.

We would like to implement the following two oracles:

1. Ob = 2
∑
x:x1=b |x〉〈x| − I and

2. Uy = 2 |Ay〉〈Ay|−I = F
(
2
∣∣A⊥y 〉〈A⊥y ∣∣− I)F , where F is the quantum Fourier Transform over Fn2 which

is equivalent to the n-qubit Hadamard gate.

The oracle Ob can be implemented locally by running on superposition a classical function that accepts
inputs that start with b and rejects otherwise. However, notice that in our case we do not have access to
the quantum oracle 2

∣∣A⊥y 〉〈A⊥y ∣∣ − I but instead to the classical oracle H⊥P (·, y) = 2
∑
x∈A⊥y

|x〉〈x| − I that

accepts all vectors in the orthogonal subspace and not just their uniform superposition. We claim that this
oracle is enough to implement Grover’s algorithm. To see this, notice that Grover’s algorithm runs on the
2-dimensional subspace spanned by |Ay,0〉 , |Ay,1〉. It is therefore, enough to implement an oracle that accepts
the state |+〉 = |Ay〉 = 1√

2
(|Ay,0〉+ |Ay,1〉) and rejects the state |−〉 = 1√

2
(|Ay,0〉 − |Ay,1〉). Let Ay = Sy + t

for some translation t. Moreover let Ay,0 = Sy,0 + a and Ay,1 = Sy,0 + b such that a1 + b1 = 1 since both
are translations of the same linear subpspace and their first bit differs. We have:

FH⊥P (·, y)F |+〉 = FH⊥P (·, y)
1

2n/4

∑
x∈A⊥y

(−1)tx |x〉

= F
1

2n/4

∑
x∈A⊥y

(−1)tx |x〉

= |+〉
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and

FH⊥P (·, y)F |−〉 = FH⊥P (·, y)
1√
2

(F |Ay,0〉 − F |Ay,1〉)

= FH⊥P (·, y)
1

2(n+3)/4

 ∑
x∈A⊥y,0

(−1)xa |x〉 −
∑

x∈A⊥y,0

(−1)xb |x〉


= FH⊥P (·, y)

1

2(n+3)/4

 ∑
x∈A⊥y,0\A⊥y

(−1)x(a+b) |x〉


= F

1

2(n+3)/4

 ∑
x∈A⊥y,0\A⊥y

−(−1)x(a+b) |x〉


= − |−〉

Moreover, since we know the number of pre-images that start with the desired bit, we can calculate the
exact number of iterations in order to find a correct solution with probability 1.

3 One-shot Chameleon Hash Functions

Before we define our notion of one-shot chameleon hash functions, we recall the original definition of
chameleon hashing. A chameleon hash function consists of three classical algorithms Gen,Eval, Inv such
that Gen(1n) : (pk, sk) outputs a public key pk and a secret key sk, Eval(pk, x, r) : h takes an input x,
randomness r and a public key pk and output a hash value h and Inv(sk, h, x) : r takes a secret trapdoor key
sk, a hash value h and input x and outputs randomness r such that Eval(x, r, pk) = h. The chameleon hash
function is collision resistant if for any polynomial time algorithm A, there is a negligible function ε such
that

Pr

[
Eval(pk, x0, r0) = Eval(pk, x1, r1)

∣∣∣∣ (pk, sk)← Gen(1n)
{(x0, r0), (x1, r1)} ← A(pk)

]
≤ ε(n)

In our setting, we have the following modifications. First, we require a family of hash functions, indexed
by a common reference string crs. This is to deal with trivial adversaries that always know a collision of a
hash function. Second, we would like the image h to be sampled together with a quantum inversion key sk ,
which can be used later, to find randomness r for any input x. Formally, we have

Definition 3 (One-Shot Chameleon Hash Functions). A one-shot chameleon hash function is a tuple of
algorithms (Gen ,Eval, Inv) with the following syntax:

Gen(crs) : (h, sk ) takes as input a common reference string crs and outputs a hash value h together with
a quantum secret key sk ,

Eval(crs, x, r) : h takes as input a common reference string crs, an input x and randomness r and
outputs a hash h,

Inv(sk , x) : r takes as input a secret key sk and an x and outputs randomness r.

Correctness. The following holds with overwhelming probability over crs and the randomness of Gen and
Inv . If (h, sk )← Gen(crs) then for any input x, we have Eval(crs, x, Inv(sk , x)) = h.

Collision Resistance. For any polynomial quantum adversary A, there is a negligible function ε such that

Pr

[
Eval(crs, x0, r0) = Eval(crs, x1, r1)

∣∣∣∣ crs← {0, 1}n
{(x0, r0), (x1, r1)} ← A(crs)

]
≤ ε(n).

Theorem 6. One-shot chameleon hash functions exist if and only if equivocal collision-resistant hash func-
tions exist.
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Proof. The only if part is straightforward by setting the input length |x| = 1 to be a single bit and defin-
ing the predicate as p(x, r) = x. For the opposite direction, we first define our chameleon hash function
(Gen ,Eval, Inv) for messages of one bit. Let (E.Gen , E.Eval, E.Equiv) be an equivocal CRHF. Define

Gen(crs): Run (h′, sk , p)← E.Gen(crs), set h = (h′, p, 0) and return (h, sk ).

Eval(crs, (p, b), r): Return (E.Eval(crs, r), p, p(r)⊕ b)

Inv(sk , (p, b)): Run r ← E.Equiv(sk , b) and return r

For correctness, we have that

Eval(crs, (p, b), Inv(sk , (p, b))) = Eval(crs, (p, b), E.Equiv(sk , b))
= Eval(crs, (p, b), r) such that p(r) = b

= (E.Eval(crs, r), p, p(r)⊕ p(r))
= (h, p, 0) such that E.Eval(crs, r) = h.

Hence, correctness is implied by the correctness of the equivocal CRHF.
For security, suppose there exists an algorithm A and non-negligible function e such that

Pr[A wins] = Pr[Eval(crs, (p0, b0), r0) = Eval(crs, (p1, b1), r1)]

= Pr[(E.Eval(crs, r0), p0, p0(r0)⊕ b0) = (E.Eval(crs, r1), p1, p1(r1)⊕ b1)]

= Pr[E.Eval(crs, r0) = E.Eval(crs, r1) ∧ r0 6= r1],

where the probability is over crs and {(p0, b0, r0), (p1, b1, r1)} ← A(crs). Then an adversary E.A(crs) who
just runs {(p0, b0, r0), (p1, b1, r1)} ← A(crs) and returns (r0, r1) can also find a collision in the equivocal hash
function with probability e(n).

Using parallel repetition, we can get one-shot chameleon hash functions for longer messages.

k-shot Chameleon Hashing. In the k-shot version, we can use our secret key sk to invert a hash value,
k but not k + 1 times. Formally, we require that the inversion algorithm outputs an updated secret key sk ′

together with r.

Definition 4 (k-shot Chameleon Hash Functions). A k-shot chameleon hash function is a tuple of algorithms
(Gen ,Eval, Inv) with the following syntax:

Gen(crs) : (h, sk ) takes as input a common reference string crs and outputs a hash value h together with
a quantum secret key sk ,

Eval(crs, x, r) : h takes as input a common reference string crs, an input x and randomness r and
outputs a hash h,

Inv(h, sk , x) : (r, sk ′) takes as input an image h, a secret key sk and an x and outputs randomness r
and an updated secret key sk ′.

Correctness. The following holds with overwhelming probability over crs and the randomness of Gen and
Inv . If (h, sk 0) ← Gen(crs) then for any k inputs x1, . . . , xk, we have Eval(crs, xi, ri) = h, where (ri, sk i) ←
Inv(h, sk i−1, xi).

(k + 1)-Collision Resistance. For any polynomial quantum adversary A, there is a negligible function ε
such that

Pr

[
∀i ∈ [k + 1],Eval(crs, xi, ri) = h

∣∣∣∣ crs← {0, 1}n
(h, {(xi, ri)}i∈[k+1])← A(crs)

]
≤ ε(n)

We can use one-shot chameleon hash functions to build k-shot ones. The idea is to use parallel repetition
and output k images. Then, to invert we pick at random one of them and we use the corresponding secret
key to invert it. Continuing this way, we can invert all k of them until we exhaust our secret keys.
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Lemma 3. k-shot chameleon hash functions exist if and only if one-shot chameleon hash functions exist.

Proof. The only-if part is straightforward by taking k = 1. We focus on the if part. Let (Gen ′,Eval′, Inv ′) be
a one-shot chameleon hash function. We define our k-shot (Gen ,Eval, Inv) as:

Gen(crs): For i ∈ [k], run (hi, sk i)← Gen ′(crs). Set h = {hi}i∈[k], sk = (sk i)i∈[k] and output (h, sk ).

Eval(crs, x, r): Parse r = (r′, h), where h is a set of k−1 images. Compute hi = Eval′(crs, x, r′), output
h ∪ {hi}.

Inv(h, sk , x): Parse sk = (sk i)i∈S . Pick a random j ← S and run r′ ← Inv ′(sk j , x). Set r = (r′, h\{hj}),
where hj = Eval′(crs, x, r′) and sk ′ = (sk i)i∈S\{j}. Output (r, sk ′).

Correctness is straightforward from the correctness of the underlying one-shot chameleon hash func-
tion. To argue security, suppose that there is an adversary A that returns (h, {(xi, ri)}i∈[k+1]) such that
Eval(crs, xi, ri) = h for all i, where |h| = k. Let ri = (r′i, hi) and notice that |hi ∩h| = k− 1, for all i. By the
pigeonhole principle, there exist i 6= j, such that hi = hj and Eval′(crs, xi, r

′
i) = Eval′(crs, xj , r

′
j) and thus

the pair ((xi, r
′
i), (xj , r

′
j)) is a collision to the one-shot chameleon hash function.

3.1 Uniformity

In some cases it may be a desirable property from a one-shot chameleon hash function, to be hard to
distinguish between a uniform r and an r generated through the inversion algorithm. Formally, we would
like the following:

Definition 5 (Uniformity). For any input x, it holds that (Eval(crs, x, r), r) ≡ (h, Inv(sk , x)), where crs, r
are picked uniformly at random and (h, sk )← Gen(crs).

For our function to be uniform, we impose some additional sufficient properties from our equivocal hash
function. We require that E.Gen returns a uniformly random h in the range of the function and always
outputs a fixed predicate p that is satisfied with probability q, for a uniformly random r. Moreover, E.Inv
returns a uniformly random r such that p(r) = b. Theses properties, are satisfied by our construction, though
it may not be the case in general. Such equivocal hash-functions, where the predicate is fixed can be thought
of as the one-shot version of claw-free functions by Goldwasser et al. [GMR84]. Now in the construction of
chameleon hash functions from equivocal hash functions, the Gen algorithm additionally picks a random bit
b′ which is 1 with probability q and returns (h′, p, b′) as the hash value. The inversion algorithm Inv(sk , (p, b))
returns E.Equiv(sk , b⊕ b′).

3.2 Signature Delegation

As illustrated in the introduction, one-shot signatures give rise to delegation of authentication where Alice
can delegate Bob to sign a single message. The idea is to use the hash-then-sign paradigm [BR96] where in
our case, the hash will be a one-shot chameleon hash.

Let S′ = (Gen′,Sign′,Ver′) be a standard signature scheme with existential unforgeability under chosen
message attacks (EUF-CMA) and let C = (Gen ,Eval, Inv) be a one-shot chameleon hash function. We define
a signature scheme S = (Gen,Sign,Ver) as:

Gen(1n) : Run (pk, sk)← Gen′(1n) and output (pk, sk).

Sign(crs, sk,m) : Pick a random r and compute h← Eval(crs,m, r) and σ ← Sign′(sk, h). Return (σ, r).

Ver(crs, pk,m, (σ, r)) : Compute h← Eval(crs,m, r) and return Ver′(pk, h, σ).

It is easy to see that the correctness of S is implied by the correctness of S′ and C. Moreover, S is EUF-CMA
as long as S is also EUF-CMA and C is secure. Indeed if an adversary could create a new signature after
querying a signing oracle, then one could use this adversary to break either the one-shot chameleon hashing
or the original signature S′.

17



Delegation. Now suppose that Alice, who owns a classical computer, possesses a key pair (pk, sk) for
S and she wishes to delegate Bob to sign a single message. To do this, Alice and Bob run the following
2-message protocol.

Bob runs (h, sk )← Gen(crs) and sends h to Alice.

Alice runs σ ← Sign′(sk, h) and sends σ to Bob.

Now Bob possesses a quantum key sk that he can use together with σ to sign any message m of his
choice. To do this, Bob runs r ← Inv(sk ,m) and returns (σ, r) as the signature of m. By the correctness of
S′ and C we get that Bob’s signature is accepted by Ver. Moreover, if a malicious Bob could come up with
more than k signatures after running the above protocol k times, then he could also break S or C.

It is worth to note that here Alice does not need to have any quantum powers to sign a message. It
is only the delegation that requires quantumness and only Bob needs to be quantum. Moreover, if C is
uniform then we get the additional property that one cannot distinguish a signature created by Alice from
a signature created by Bob.

Chain of delegations. Consider the scenario where Alice has delegated to Bob to sign k messages but
Bob wishes to delegate l ≤ k of them to Charlie. Then Bob and Charlie can run in turn the above protocol
where now Bob will use his l secret keys to invert Charlie’s l hash values.

Several optimizations can be applied to the above protocol. Setting uniformity aside, a different way for
Alice to delegate Bob k signatures, would be to sign the message (k, h) where h is Bob’s hash value in the
above protocol. Now Bob can use a modification of the Naor-Yung paradigm [NY89] for creating full-blown
signatures out of one-time signatures as follows. He first runs (h′, sk ′)← Gen(crs). Then, to sign a message
m, he runs r ← Inv(sk , (m,h′)) and the signature will now be (σ,m, h). Iteratively, Bob can use sk ′ for a
new message. To verify, one checks that all signatures in the chain are valid and that the total length of the
chain is at most k. Similarly, Bob can decide to delegate to Charlie l ≤ k of his signatures using the same
protocol.

Remark 3. A reader familiar with cryptocurrencies such as Bitcoin can see an immediate similarity between
signature delegation and blockchains. Indeed, a chain of delegations can be seen as a blockchain where each
block contains a single signature and violating security implies a fork in this chain. This similarity becomes
more apparent in section 5, where we also show how one can create quantum money using only classical
communication as well as smart contracts.

Remark 4. A different name for the above construction would be blind signatures, hence addressing an
open problem problem posed by Ben-David and Sattath [BDS16]. Moreover, we get the additional property
that Bob can decide later which message he wants to sign. Notice that in a classical world this would be
impossible since Bob could use his signing key multiple times. Therefore, it is necessary in all classical blind
signature schemes that Bob commits to the message he wants to sign by masking it and sending it to Alice
for a signature.

4 One-shot Signatures and Budget Signatures

A one-shot signature scheme has the property that no one can create a public key together with two valid
signatures.

Definition 6 (One-Shot Signatures). A one-shot signature scheme is a tuple of algorithms (Gen , Sign ,Ver)
with the following syntax:

Gen(crs) : (pk, sk ) takes a common reference string crs and outputs a classical public key pk and a
quantum secret key sk .

Sign(sk ,m) : σ takes a secret key sk and a message m and outputs a signature σ.

Ver(crs, pk,m, σ) : b takes a common reference string crs, a public key pk, a message m and a signature
σ and outputs a bit b.

18



Correctness. If (pk, sk )← Gen(crs) then Ver(pk,m, Sign(sk ,m)) = 1 for any message m with overwhelming
probability.

Security. For any quantum polynomial time algorithm A there is a negligible function ε such that

Pr

[
Ver(crs, pk,m0, σ0) = 1
Ver(crs, pk,m1, σ1) = 1

∣∣∣∣ crs← {0, 1}n
(pk, {(m0, σ0), (m1, σ1)})← A(crs)

]
≤ ε(n)

One-shot chameleon hashing gives a direct way to build one-shot signatures:

Theorem 7. One-shot signatures exist if one-shot chameleon hash functions exist.

Proof. Let (C.Gen , C.Eval, C.Inv) be a one-shot chameleon hash function. We define our signature scheme
(Gen , Sign ,Ver) as follows. Gen(crs) runs (h, sk )← C.Gen(crs) and returns pk = h as the public key and sk as
the secret key. Sign(sk ,m) runs r ← C.Inv(sk ,m) and returns σ = r as the signature. Ver(crs, pk,m, σ) runs
h′ = C.Eval(crs,m, σ) and accepts only if h′ = pk. Correctness and security are implied immediately from
the correctness and the security of the underlying chameleon hash function.

One-shot signatures are a specific case of a more flexible notion which we call budget signatures. In a
budget signature scheme, a public key has an initial budget β and each signature has a cost c ≤ β. One can
use their secret key to sign messages until the budget is exhausted. Security requires than no adversary can
come up with signatures whose total cost exceeds the budget.

Definition 7 (Budget Signatures). A budget signature scheme is a tuple of algorithms (Gen , Sign ,Ver) with
the following syntax:

Gen(crs, β) : (pk, sk ) takes a common reference string crs and a budget β and outputs a classical public
key pk with budget pk.budget and a quantum secret key sk with budget sk .budget.

Sign(sk ,m, c) : (sk ′, σ) takes a secret key sk , a message m and a cost c > 0 and outputs an updated
secret key sk ′ and a signature σ.

Ver(crs, pk,m, σ, c) : b takes a common reference string crs, a public key pk, a message m, a signature
σ and a cost c and outputs a bit b.

Correctness. The following hold with overwhelming probability. If (pk, sk )← Gen(crs, β), then pk.budget =
sk .budget = β. Moreover, if sk .budget ≥ c and (sk ′, σ) ← Sign(sk ,m, c) then Ver(crs, pk,m, σ, c) = 1 and
sk ′.budget = sk .budget− c.

Security. For any quantum polynomial time algorithm A there is a negligible function ε such that

Pr

[
∀i,Ver(crs, pk,mi, σi, ci) = 1∑

i ci > pk.budget

∣∣∣∣ crs← {0, 1}n
(pk, {(mi, σi, ci)})← A(crs)

]
≤ ε(n)

It is easy to see that by modifying Ver to additionally check whether pk.budget = c, we immediately get
one-shot signatures.

4.1 From One-Shot Signatures to Budget Signatures

We get budget signatures from one-shot signatures by applying a variant of the Merkle signature scheme
[Mer89]. Our public key will be the pair (pk, β) where pk is an one-shot signature public key and β is the
initial budget. To sign a message m with a signature of cost c, we first pick two pairs (pkc, sk c)← Gen(crs)
and (pkβ−c, sk β−c) ← Gen(crs) and we generate σ = Sign(sk , (pkc, c, pkβ−c, β − c)). This signature indicates
that c budget has been given to pkc and the rest to pkβ−c. We then derive σ = Sign(sk c,m) and we return
(pkc, pkβ−c, σ) as the signature of m. To verify the signature, we also need to verify that the budgets of the
two keys sum to β.
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The secret key data structure. The secret key sk is a binary tree T whose nodes N contain 3 attributes:

• N.pk: the public key of the node,

• N.β: the budget of the node,

• N.sk or N.σ: a quantum secret key or a signature. A node is always initiated with a quantum secret
key of a one-shot signature. When the secret key is used to sign a message, the key is replaced by the
signature. A node that has not used its secret key yet is “on”, whereas a node that has used its key
and already has a signature is “off”.

The tree maintains the following invariances. Let Ni be a non-leaf node. Then,

• Ni is off and Ni.σ is the signature of the tuple (Ni0.pk, Ni0.β,Ni1.pk, Ni1.β), where Ni0, Ni1 are its
two children.

• Ni.β = Ni0.β +Ni1.β.

Intuitively, the node Ni that is on can delegate its budget Ni.β to its two children and turn off. Therefore,
if a node is on, then it necessarily is a leaf. However, there may exist leaves that are off. The budget of the
secret key, sk .budget is defined to be the sum of the budgets of its on nodes.

An on node Ni can be modified in two ways: either by signing a message m or by generating two new
leaves underneath it.

Let (Gen ′, Sign ′,Ver′) be an one-shot signature scheme. Our budget signature scheme (Gen , Sign ,Ver) is
defined as follows:

Gen(crs, β) : Generate (pk′, sk ′) ← Gen ′(crs). Create a tree sk whose root node is N such that N.pk =
pk′, N.β = β,N.sk = sk ′. Create pk = (pk′, β) and return (pk, sk ). The budget of pk is defined as
pk.budget = β.

Sign(sk ,m, c) first identifies a set S of leaves in sk whose budgets sum to c. In this process a leaf Ni
may have to be extended by adding two children underneath it, maintaining the invariance. There can
be different ways to implement this extension, but we leave this as part of the implementation.

Then for each leaf N ∈ S, generate σ′ = Sign ′(N.sk ,m) and set N.σ = σ. The signature σ of m is the
subtree obtained from sk by traversing the paths from the root to the leaves in S and as well as the
public keys and the budgets of their siblings. The new secret key sk ′ is the modified tree.

Ver(crs, (pk′, β),m, σ, c) : Parse σ as a tree with root R and verify that R.pk = pk′ and R.β = β. Then
for every non-leaf Ni ∈ σ:

1. Verify that Ver′(crs, Ni.pk, (Ni0.pk, Ni0.β,Ni1.pk, Ni1.β), Ni.σ) = 1.

2. Verify that Ni.β = Ni0.β +Ni1.β.

Moreover, initialize s = 0 and for every leaf Ni ∈ σ:

1. Verify that Ver′(crs, Ni.pk,m,Ni.σ) = 1.

2. s = s+Ni.β.

Last, verify that s ≥ c.
Theorem 8. Suppose that (Gen ′, Sign ′,Ver′) is a correct and secure one-shot signature scheme. Then
(Gen , Sign ,Ver) is a correct and secure budget signature scheme.

Proof. For correctness, since the initial sk is a tree with just the root, we have that pk.budget = sk .budget = β.
Moreover, extending a node with two children does not modify the total budget; the budget is distributed
between its children. Last, the leaves that were on and signed the message and whose total budget was c
now turned off and thus we get that sk ′.budget = sk .budget− c.

For security, suppose that an adversary is able to come up with a public key pk as well as a set
{(mi, σi, ci)}, such that the total cost exceeds pk.budget and all signatures are accepted. Moreover, since
(Gen ′, Sign ′,Ver′) is a one-shot signature, it follows that all signatures σi are subtrees of a single tree T and
that the sum of the budgets of its leaves exceeds pk.budget. Therefore, it follows that there exist siblings
Ni0, Ni1 such that Ni.β < Ni0.β +Ni1.β, reaching a contradiction.
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5 Quantum Lightning and Quantum Money

Definition 8 (Quantum Money with Classical Communication). A quantum money scheme with classical
communication is a pair of interactive quantum algorithms (S ,R ) as well as a generation algorithm Gen with
the following syntax:

Gen(crs) : (pk, coin) takes as input a common string crs and outputs a quantum coin coin and a public
key pk.

〈S(coin),R (crs, pk)〉R : (coin ′, b) is a classical protocol between S and R where at the end R outputs a
quantum coin coin ′ and a bit b.

To simplify notation we define two functions Coin ,Ver with the following property: Coin(crs, pk, coin) =
coin ′ and Ver (crs, pk, coin) = b if and only if 〈S(coin),R (crs, pk)〉R = (coin ′, b).

Correctness. If (coin , pk) ← Gen(crs) then Ver (crs, pk, coin) = 1 with overwhelming probability. Moreover,
if Ver (crs, pk, coin) = 1 then Ver (crs, pk, Coin(crs, pk, coin)) = 1 with overwhelming probability.

Security. For an adversary B with input state s interacting with two honest receivers in an arbitrary way,
let
〈

B(s),R 2(crs, pk)
〉

R 2 be the two outputs bits of the two receivers. For any polynomial time quantum

adversaries A,B, there is a negligible function ε such that

Pr

[〈
B(s),R 2(crs, pk)

〉
R 2 = (1, 1)

∣∣∣∣ crs← {0, 1}n
(pk, s)← A(crs)

]
≤ ε(n)

Notice that the above definition generalizes the notion of quantum money. Indeed, if we allow quantum
communication in the above protocol, then we can essentially get a single message protocol where the sender
sends the coin to the receiver. Moreover, notice that interaction is necessary for sending a coin through
a classical channel. Otherwise, one could simply copy the classical information and send it to multiple
recipients.

5.1 Construction

We use our signature delegation mechanism to build our quantum money scheme. Intuitively, our coin will
consist of a list of pairs (pk1, σ1), . . . , (pkn−1, σn−1) together with the pair (pkn, sk n). To send our coin to
someone, we first receive from them a new public key pkn+1. We then use our quantum secret key to generate
a signature σn+1 ← Sign(sk n+1, pkn+1) and we send the list (pk1, σ1), . . . , (pkn, σn). To verify, the receiver
checks that pk1 = pk and that all signatures in the list are valid.

Let (Gen , Sign ,Ver) be a one-shot signature. We define our quantum money scheme (Gen ′, S ,R ) as follows.

Gen ′(crs): run (pk, sk )← Gen(crs). Set coin = (pk, sk ) and return (pk, coin).

S(coin): Parse coin = [(pki, σi)]i∈[k−1], (pkk, sk k). Receive pk from R . Generate σk ← Sign(sk k, pk) and
send [(pki, σi)]i∈[k] to R .

R (crs, pk′): Generate (pk, sk )← Gen(crs) and send pk to S . Receive [(pki, σi)]i∈[k] from S . If pk1 = pk′

and Ver(crs, pki, pki+1, σi) = 1 for all i ∈ [k − 1], where pkk = pk, then set b = 1. Else b = 0. Set
coin = [(pki, σi)]i∈[k], (pk, sk ). Return (coin , b).

Clearly the above scheme is correct. For security, suppose there is an adversary that can interact with
two honest receivers and can convince them with respect to the same public key pk. This implies that the
receivers sent pkk+1, pk

′
k+1 such that pkk+1 6= pk′k+1 with overwhelming probability and the adversary replied

with classical messages [(pki, σi)]i∈[k], [(pk′i, σ
′
i)]i∈[k′], such that pk1 = pk′1 = pk and all signatures are valid.

Therefore, there exists an i ∈ [k − 1] such that pki = pk′i but pki+1 6= pk′i+1. Thus, the adversary has been
able to create two signatures for the same public key, breaking the security of one-shot signatures. In the
blockchain terminology, the adversary has been able to come up with a fork in the chain of signatures.
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Full scheme and value of a coin. The above definition and construction are a “mini-scheme” version
of a quantum money scheme, and the most essential tool in building quantum money. As shown in [AC12],
a trusted mint can then use a classical post-quantum signature scheme to sign the public key of the coin.
Using our budget signatures we can get additional flexibility from our quantum money scheme. Now the
mint instead of signing pk, it can sign the pair (pk, V ) to mint a coin of value V . We can then view such
a coin as a budget signature with total budget V . One can spend any fraction of V by simply signing the
receivers’ public keys with different costs.

5.2 Primitive Smart Contracts

Our quantum money scheme gives us some flexibility in building smart contracts.

Threshold coins. Imagine a scenario where a party owns a very valuable coin and is worried that the
secret key of this coin may leak. A way to protect against such a vulnerability is to create a multi-signature
smart contract consisting of n public keys as well as a threshold k ≤ n and signing this contract using the
secret key of the coin. Then for this coin to be spent, k signatures have to be presented all of which signing
the recipient’s new public key. By requiring k > n/2 we can guarantee that this coin cannot be sent to two
different recipients.

Coin Flipping. Consider a simple coin flipping protocol between Alice and Bob, where the winner gets
the other party’s coin. To do that, Alice first picks a random bit bA and commits to it using a hash function
H and randomness rA. She retrieves a commitment cA. She then creates a new key pair using the one-shot
signature (pkA, sk A) ← Gen(crs). Bob does the same thing creating a pair (pkB , sk B) ← Gen(crs) as well as
a commitment cB for a random bit bB and he sends pkB and cB to Alice. Alice then uses her coin to sign
the contract (pkA, pkB , cA, cB) retrieving a signature σ which she sends to Bob. Intuitively, this contract
claims that if bA ⊕ bB = 0 then pkA is the valid owner of the coin and if bA ⊕ bB = 1 the pkB is the valid
owner of the coin. Subsequently, both parties decommit their bits and the winner now possesses the secret
key that can spend the coin. Importantly, the hash function H used for commitment should be unequivocal.
Of course, the above contract does not guarantee fairness since Bob may decide to not reveal after seeing
Alice’s bit. Nonetheless, there is no direct incentive for Bob to not reveal if he knows upfront that he did not
win. Compare this with an equivalent smart contract on the blockchain where the revealing message also
requires a small transaction fee in order to be included in the blockchain that Bob may be unwilling to pay.

More generally, quantum money with classical communication give rise to smart contracts where one can
efficiently verify that it is computationally infeasible to make the contract send more money than what it
was initiated with. This is easily enforced in a blockchain based smart contract since one can easily check
the balance of a contract at any given time. In our case, since all computations are local, this property
should be efficiently verified by the code of the contract. Crucially, a contract that manages to trick such a
verification procedure could completely devastate the quantum money scheme.

5.3 Improvements

Succinctness. In our construction, the size of the coin, the communication complexity as well as the com-
plexity of its verification increases linearly with the number of times it is transferred. This is an undesirable
property that we do not see in a scheme with quantum communication. By using succinct non-interactive
arguments of knowledge (SNARKs) we can keep these quantities non-increasing. The idea is to compress a
list of length 2 of the form (pk1, σ1), (pk2, σ2) into a proof π that proves that we know such a list that starts
with pk1 and ends with a signature on a public key pk3. Moreover, we would like to be able to compose such
proofs; given a proof πn that there is a list that starts with pk1 and ends with a signature on our public key
pkn and given a signature σn such that Ver(crs, pkn, pkn+1, σn) = 1, we can generate a proof πn+1 that we
know a key pkn as well as proof πn and signature σn with the above properties.

Anonymity. SNARKs alone do not necessarily hide the elements in the chain, thus potentially leaking
information regarding the keys that used to own the coin. In an ideal scenario, we would like all banknotes
to behave like actual coins that are indistinguishable from each other. For such a notion to make sense we
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should turn to a full blown scheme instead of a mini-scheme. Here we have several banknotes that are all
signed by the mint. The requirement is that no adversary who sends to an honest receiver two valid coins
and gets back at random one of the two, should be able to distinguish which of the two coins he received.
By additionally requiring zero-knowledge from our SNARKs we can achieve such a notion.

5.4 Decentralized Cryptocurrency

As already argued by Zhandry [Zha19], there is a way of getting decentralized blockchain-less cryptocurrencies
by combining quantum lightning with proofs of work.

Definition 9 (Quantum Lightning [Zha19]). A quantum lightning is a pair of algorithms (Gen ,Ver ) such
that

Gen(crs) : (pk, bolt) takes as input a crs and outputs a public key pk and a quantum state bolt .

Ver (crs, (pk, bolt)) : b takes as inputs a crs, a public key pk and a quantum state bolt and outputs a bit
b.

Correctness. Ver (crs,Gen(crs)) = 1 with overwhelming probability over crs and the randomness of Gen ,Ver .

Security. For any polynomial quantum adversary A, there is a negligible function ε such that

Pr

[
Ver (crs, (pk, bolt0)) = 1
Ver (crs, (pk, bolt1)) = 1

∣∣∣∣ crs← {0, 1}n
(pk, bolt0, bolt1)← A(crs)

]
≤ ε(n),

where bolt0, bolt1 can potentially be entangled.

It is easy to see that one-shot signatures are a generalization of quantum lightning. Indeed, the secret
key sk of a one-shot signature can be used as a bolt. To verify the bolt, we just need to pick two messages
m0 6= m1 and then sign the first but without measuring in the end. Then run the verification algorithm
to verify that the signature is valid. If this is the case, measuring the output bit will not disturb the state
and thus we can rewind, sign the second message, again without measuring and subsequently, verify the
signature. Finally, we rewind again to retrieve the initial sk . Schematically, the quantum circuit of the
verification appears in figure 1.

The idea behind building a decentralized cryptocurrency out of quantum lightning is to consider a bolt
(pk, bolt) valid only if H(pk) (or just pk) is small; e.g. starting with at least k zeros. Thus, a user will have
to spend a considerable amount of computational power in order to come up with such a bolt. However,
using quantum lightning we can only transfer a coin quantumly. By replacing quantum lightning with one-
shot signatures we can achieve a cryptocurrency that can also be transferred classically. Indeed, the only
difference between a full blown quantum money scheme from a decentralized cryptocurrency scheme is the
way we verify the first public key pk1 in the list of public-key, signature pairs: in a quantum money scheme we
want a signature of pk1 under the mint’s public key, whereas in a decentralized cryptocurrency we want that
pk1 is considerably small. Arguably, as explained by Zhandry [Zha19], such a decentralized cryptocurrency
would suffer from huge inflation as technology improves.

6 Ordered Signatures and Applications

In an ordered signature scheme, every message is signed with respect to a tag t. Unlikely one-shot signatures,
we will allow the signer to sign any number of messages with associated tags. However, security sill insist
that the tags signed must be in increasing order. That is, once the signer signs a message relative to tag t,
it will become impossible to sign a message relative to a tag t′ < t.

We will model security as follows. Consider a signing adversary S and a receiver adversary R . Here, S
will send valid message/tag/signature (m, t, σ) triples to R . At the end of the interaction, R outputs a bit b.

We will consider a special class of adversaries, called ordered signers, which only outputs signed messages
where the tags are in increasing order. To formalize the fact that an adversary can sign a message and keep
it for later, we have S additionally interacts with a database D, where:
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Figure 1: Quantum lightning from one-shot signatures. The verification algorithm. Here UA corresponds
to the unitary operator implementing the algorithm A without any final measurement. Moreover, Sign

b
and

Verb correspond to signing the bit b and verifying the signature of the bit b, respectively.

• D stores triples (m, t, σ). D is initially empty.

• S has arbitrary read access to D.

• S can write a triple to D only if (1) the signature is valid, and (2) the tag t is larger than any tag
already present in D.

• S can only send messages to R if they are in D.

Definition 10 (Ordered Signatures). An ordered signature scheme is a tuple of algorithms (Gen , Sign ,Ver)
with the following syntax:

Gen(crs) : (pk, sk ) takes a common reference string crs and outputs a classical public key pk and a
quantum secret key sk .

Sign(sk ,m, t) : (sk ′, σ) takes a secret key sk , a message m, and tag t, and outputs an updated secret key
sk ′ and a signature σ.

Ver(crs, pk,m, t, σ) : b takes a common reference string crs, a public key pk, a message m, a tag t, and
a signature σ and outputs a bit b.

Correctness. For any sequence of message/tag pairs (m1, t1), . . . , (mn, tn) such that t1 < · · · < tn, the
following hold with overwhelming probability. Let (pk, sk 0)← Gen(crs). Then for i = 1, . . . , n, let (sk i, σi)←
Sign(sk i−1,mi, ti). Then we have that Ver(crs, pk,mi, ti, σ) = 1 for all i.

Security. For any quantum polynomial time signing adversary S and any quantum polynomial time receiver
adversary R , there is an ordered signing adversary S ′ such that R has negligible advantage in distinguishing
S from S ′.

6.1 Construction

We construct our ordered signatures using a chain of keys and signatures, similar to signature delegation. A
signature includes the entire chain, and we leave open the problem of creating more succinct signatures, for
example using composable SNARKs.
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Let ⊥ be a special message to denote no message was used. Let (Gen ′, Sign ′,Ver′) be a one-shot signature.

Gen(crs) : Let (pk, sk )← Gen ′(crs). Then let C = 〈(pk,−∞,⊥,⊥)〉 be an list of length 1. Then output
(pk, (C, sk )).

Sign((C, sk ),m, t) : Generate (pk′, sk ′) ← Gen ′(crs). Then let σ ← Sign ′(sk , (pk′,m, t)). Let C =
C||(pk′, t,m, σ). Then output ((C, sk ′), C).

Ver(crs, pk,m, t, C) : Check that for all i ∈ [|C|], Ver′(crs, Ci−1.pk, (Ci.pk, Ci.m,Ci.t), Ci.σ) = 1 and
Ci−1.t < Ci.t. Moreover, check that C0.pk = pk and C|C|−1.t = t. If all checks pass, output 1.
Otherwise, output 0.

Correctness is immediate from the correctness of one shot signatures.
To show security, consider any polynomial time signing adversary S . We create an ordered simulating

adversary S ′ as follows. For any message m it receives from R , it forwards it to S . When S returns a triple
(m, t, C) which, by assumption passes the verification algorithm, S ′ acts as follows. It parses C as a list of
signatures, where every prefix C[1,k] is a signature of the message Ck+1.m with tag Ck+1.t. It then stores
in the database D all triples (Ck+1.m,Ck+1.t, C[1,k]) that it is allowed to, in order of increasing tags. Of
course, it may be the case that S ′ is not allowed to store some of these triples because their tags are smaller
than the largest tag in D. Finally, S ′ forwards (m, t, C) to R if it appears in D.

Now, suppose that R can distinguish S from S ′. This implies that at some round during the interaction
between S ′ and R the triple (m, t, C) could not be found in the database because the database’s largest tag
was already t′ > t. We claim that at this point there is a break in the one-shot signature. Let (m′, t′, C ′) be
the triple with the largest tag t′ in D at that point and notice that C is not a prefix of C ′ since otherwise, it
would appear in the database D. Therefore, since both C,C ′ share the same public key as their first element,
there must exist signatures σi, σ

′
i such that both of them verify under the same public key pki−1.

6.2 Provably Secret Signing Keys

In this section we aim to create a signature scheme where the signing key is provably unique; i.e., there is an
efficient way to convince ourselves that our secret key has not leaked or, put differently, as long as we can
sign messages no one else can. Such a powerful primitive is clearly impossible classically since one can clone
a classical state. One can view such a primitive as a much stronger version of the no-cloning theorem. The
no-cloning theorem by itself implies that one cannot clone an unknown state but nothing is stated about
how useful such a state is. Moving to public-key quantum money, the no-cloning is strengthened by claiming
that one cannot clone a quantum state even if there is an efficient way to verify this state. Here we take
this idea one step further proving that one cannot clone a quantum state even if it actually has some useful
functionality; in particular, it is a signing key.

In fact, here we are proving something even stronger; namely, that two isolated adversaries cannot sign
messages that verify with the same public key. This holds even if the adversaries come up with “weird”
states that do not correspond to valid signing keys and even if the adversaries manage to sign messages
without using the official signing algorithm.

Informally, we require that no adversary can come up with a public key together with two states such
that both states can be used to sign “unpredictable” messages. Here, the notion of unpredictability requires
special attention. For example, an adversary might have computed a signature some time in the past and
present it as a new one. We prevent such a scenario by introducing an adversarially chosen, yet high-
entropy distribution on the messages. An adversary wins if they can sign messages that we sample from this
distribution. Formally, we have:

Definition 11 (Single Signer Security). A signature scheme (Gen , Sign ,Ver) is single signer secure if for any
quantum polynomial time adversaries A,A0,A1, and for any efficiently sampleable distributions D0, D1 with
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super-logarithmic min-entropy over the message space, there is a negligible function ε such that

Pr


Ver(crs, pk,m0, σ0) = 1
Ver(crs, pk,m1, σ1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

crs← {0, 1}n
(pk, sk 0, sk 1)← A(crs)

m0 ← D0

m1 ← D1

σ0 ← A0(sk 0,m0)
σ1 ← A1(sk 1,m1)

 ≤ ε(n),

where sk 0, sk 1 can potentially be entangled.

The above definition aims to capture a particular type of attacks that we call splitting attacks. In such an
attack, one may try to split a secret key into two secret keys that potentially sign different sets of messages;
for example sk 0 may sign messages that begin with 0 and sk 1 may sign messages that begin with 1.

Theorem 9 (Ordered Signatures to Single Signers). Single signer signatures exist if ordered signatures exist.

Proof. Let O = (Gen ′, Sign ′,Eval′) be an ordered signature scheme. Our single signer scheme (Gen , Sign ,Ver)
is defined as follows:

Gen(crs) : Run (pk, sk ′0)← Gen ′(crs). Set sk 0 = (sk ′0, 0) and output (pk, sk 0).

Sign(sk i,m) : Parse sk i = (sk ′i, t). Run (σ′, sk ′i+1) ← Sign ′(sk ′i,m, t). Set σ = (σ′, t) and sk i+1 =
(sk ′i+1, t+ 1). Output (σ, sk i+1).

Ver(crs,m, σ) : Parse σ = (σ′, t) and output Ver′(crs, pk,m, t, σ).

Now suppose that there are adversaries A,A0,A1 and distributions D0, D1, such that the above probability
is non-negligible. A ′(crs) first runs A(crs) retrieving a public key pk and quantum states sk 0, sk 1. It then
samples m0 ← D0 and retrieves σ0 ← A0(sk 0,m0). Subsequently, it samples m1 ← D1 and retrieves
σ1 ← A1(sk 1,m1). Let t0, t1 be the tags of σ0, σ1 respectively. Since D1 has high entropy and O is an ordered
signature scheme, it follows that Pr[t1 ≤ t0] is negligible. Moreover, since A0 and A1 are independent, A ′ could
first run A1 and subsequently A0 in which case A ′ breaks security of ordered signatures with non-negligible
probability.

6.3 From Ordered Signatures to Delayed Signatures

Definition 12 (δ-Delay Signatures). A delay signature scheme is a tuple of algorithms (Gen , Sign ,Ver) with
the following syntax:

Gen(crs) : (pk, sk ) takes a common reference string crs and outputs a classical public key pk and a
quantum secret key sk .

Sign(sk ,m, rd, fd) : (sk ′, σ) takes a secret key sk , a message m, a reverse delay rd, and a forward delay
fd and outputs an updated secret key sk ′ and a signature σ.

Ver(crs, pk,m, rd, fd, σ) : b takes a common reference string crs, a public key pk, a message m, a reverse
delay rd, and a forward delay fd and a signature σ and outputs a bit b.

Correctness. For any sequence of messages (m1, rd1, fd1), . . . , (mn, rdn, fdn), the following holds with over-
whelming probability. Let (pk, sk 0)← Gen(crs). Then for i ∈ [n], let (sk i, σi)← Sign(sk i−1,mi, rdi, fdi). Then
we have that Ver(crs, pk,mi, rdi, fdi, σ) = 1 for all i.
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δ-Delay. For any wall-clock time delta T , any pair of delays (rd1, fd1), (rd2, fd2), any efficiently sampleable
distributions D0, D1 with super-logarithmic min-entropy over the message space, and any quantum polynomial
time adversaries A = (A1,A2,A3), there is a negligible function ε such that when the wall-clock time delta
between the start of A2 and the completion of A3 is at most (1− δ)T ,

Pr


Ver(crs, pk,m0, rd0, fd0, σ0) = 1
Ver(crs, pk,m1, rd1, fd1, σ1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

crs← {0, 1}n
(pk, sk 0)← A1(crs)

m0 ← D0

m1 ← D1

σ0 ← A2(sk 0,m0, rd0, fd0)
σ1 ← A3(sk 1,m1, rd1, fd1)

 ≤ ε(n),

We build our delay signatures on ordered signatures and the incremental proof of sequential work of Dot-
tling et al.[DLM19]. Dottling et al.’s work is not proven secure against a quantum adversary, we conjecture
that a classical incremental proof of sequential work satisfying their definition could exist against quantum
adversaries. We denote the ordered signature algorithms as prefixed with Ord. We denote the incremental
proof of sequential work algorithms as prefixed with Ipsw.

We additionally need for our construction a subroutine StartSeqWork, which takes a message and starts
sequential work in the background; a subroutine SeqWork, which takes a message, proof, and accumulated
time and performs sequential work; and a minimum delay quanta ∆. We construct the algorithms as follows:

Gen(crs) : Let (pk1, sk 1) ← Ord.Gen(crs). Output (pk1, (sk 1, 1)). Start StartSeqWork(pk1) in the back-
ground.

Sign(sk ,m, rd, fd) : Let (sk , c) ← sk . Let fd′ be the fd parameter from the previous call to Sign ,
or 0 if c = 1. If a call has not been made to SeqWork with T ≥ max(rd, fd′), wait until such a
call has been made. Halt SeqWork, and let χ, T, π be the parameters for the first call such that
T ≥ max(rd, fd′). Let (sk ′, σc)← Ord.Sign(sk , (m, rd, fd, χ, T, π), c). Let σ be the list of c tuples. Each
tuple i contains the σi value from the corresponding prior execution of Sign , and contains the respective
(mi, rdi, fdi, χi, Ti, πi) values corresponding to that execution’s input to Sign . Output ((sk ′, c + 1), σ).
Start StartSeqWork((m,π)) in the background.

Ver(crs, pk,m, rd, fd, σ) : Let c = |σ|. Verify Ord.Ver(pk,m, c, σc) = 1. Verify that for each i ∈ [1 . . . c],
Ipsw.Ver(χi, Ti, πi) = 1. Verify that χ1 = pk and T1 ≥ rd1. Verify that χi = (mi−1, πi−1) and
Ti ≥ max(rdi, fdi−1) for i ∈ [2 . . . c]. If all checks verify to true output 1, otherwise output 0.

StartSeqWork(χ) : Let π ← Ipsw.Prove(χ,∆). Run SeqWork(m,∆, π).

SeqWork(χ, T, π) : Record the parameters in a way accessible to Sign . Let π′ ← Ipsw.Inc(χ, T,∆, π).
Run SeqWork(χ, T + ∆, π′)

Correctness is immediate from the ordered signature definition. Note that if T = max(rdi, fdi−1), an
honest prover will require

⌈
T
∆

⌉
∆ time to complete signature i.

To show the δ-Delay property, consider an adversary who is able to produce two signatures within wall-
clock time T < (1−δ) max(rd1, fd0). Because the proof of sequential work in σ1 relies on the message m0, the
proof could not have been started before A1 learned of m0. Because A1 outputs a signature m0 before A2 is
given m1, and because the list of signatures is append-only and unique by the security of ordered signatures,
the list of signatures output by A2 must contain the signature on m0. Because proofs of sequential work
are verified, by the soundness property of incremental proofs of sequential work, the signature immediately
following the signature on m0 must have included a proof of sequential work taking at least fd0 time, and the
signature of m1 must have included a proof of sequential work taking at least rd1 time. These signatures need
not be distinct. If the α parameter from the incremental proof of sequential work is defined appropriately
relative to δ, then the probability the adversary succeeded on both checks is negligible.
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7 Non-Interactive Proof of Quantumness and Min-Entropy

In this section we show that one-shot signatures can be used to create public-coin interactive proofs of quan-
tumness as well as publicly verifiable proofs of quantumness and min-entropy. Although the constructions
are fairly simple, we include them here together with their definitions for completeness.

7.1 Proofs of Quantumness

For interactive (possibly quantum) algorithms P, V , let 〈P, V 〉 be the output of V after interacting with P .

Definition 13. A public-coin interactive proof of quantumness is a pair of interactive algorithms (P ,V),
where P is quantum and V is classical. P and V run a classical multi-round protocol in which, at each round,
Ver picks a random message m← {0, 1}n and sends it to P .

Correctness. 〈P (crs),V(crs)〉 = 1 with overwhelming probability over crs and the randomness of P .

Security. For any classical polynomial time adversary P ∗, there is a negligible function ε such that

Pr [〈P ∗(crs),V(crs)〉 = 1|crs← {0, 1}n] ≤ ε(n)

Theorem 10. A 3-message public-coin interactive proof of quantumness exists if one-shot signatures exist.

Proof. P (crs) runs (pk, sk ) ← Gen(crs) and sends pk to V. V(crs) picks a random message m ← {0, 1}n and
sends it to P . Subsequently, P generates σ ← Sign(sk ,m) and sends it to V. Finally, V runs b← Ver(crs,m, σ)
and accepts if b = 1. Correctness is straightforward from the correctness of the one-shot signature scheme.
For security, assume that there exists a classical prover P ∗ that can convince V with non-negligible probability.
We will create an adversary A against the one-shot signature. A(crs) first runs P ∗(crs) and gets a public key
pk. It then picks at random a message m0 and asks from P ∗ to sign it retrieving a signature σ0. Since the
adversary is classical, A can rewind P ∗ and ask from P ∗ to sign a second random message m1 with respect
to pk, retrieving a signature σ1. By a standard forking lemma, it follows that both signatures will be valid
with non-negligible probability.

Combining theorem 10 with the following lemma proved independently by Liu and Zhandry [LZ19] and
Don et al. [DFMS19], we immediately get a non-interactive proof of quantumness in the quantum random
oracle model.

Lemma 4 ([LZ19, DFMS19]). Any public-coin interactive proof can be turned into non-interactive in the
random oracle model.

Theorem 11. A publicly verifiable non-interactive proof of quantumness exists in the random oracle model
if one-shot signatures exist.

7.2 Certifiable Min-Entropy

Similarly to a proof of quantumness, a proof of min-entropy is a protocol between a prover and a verifier at
the end of which, the verifier outputs a string r of n bits together with a bit b. Correctness requires that at
the end of the protocol the entropy of r is n. Security states that if the verifier accepts (b = 1) then r has
to have super-logarithmic min-entropy. For a random variable r of n bits, the min-entropy of r is defined as
Hmin(r) = − log maxx∈{0,1}n Pr[x = r].

Definition 14. A public-coin interactive proof of min-entropy is a pair of interactive algorithms (P ,V),
where P is quantum and V is classical. P and V run a classical multi-round protocol in which, at each round,
Ver picks a random message m← {0, 1}n and sends it to P .

Correctness. 〈P (crs),V(crs)〉 = (1, r) and Hmin(r) = n with overwhelming probability over crs and the
randomness of P .
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Security. For any quantum polynomial time adversary P∗ and for any polynomial p, there is a negligible
function ε such that

Pr

[
〈P∗(crs),V(crs)〉 = (1, r)
Hmin(r) ≤ log p(n)

∣∣∣∣crs← {0, 1}n] ≤ ε(n)

Theorem 12. A 3-message public-coin interactive proof of min-entropy exists if one-shot signatures exist.

Proof. The protocol is identical to the protocol above with the only difference being that the verifier V
together with the bit b, also outputs the public key pk as the randomness r. If a malicious prover could
convince V of an r with logarithmic entropy, then by running this adversary polynomially many times with
independently random challenge messages every time, then we would be be able to sign two messages with
respect to the same public key, hence breaking the one-shot signature.

Again, by invoking lemma 4, we can turn the protocol into non-interactive in the random oracle model.
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